## Y YASKAWA

## Low Harmonics Regenerative Matrix Converter U1000



## Much More Than an AC Drive! Next-generation Motor Drives

## Do You Have Problems with AC Drives?

Yaskawa's development of the world's first application of matrix converter technology in 2006 made it possible to solve AC drive problems. Further evolution of this technology has resulted in the U1000.
This sophisticated series of motor drives available only from Yaskawa eliminates the problems of standard AC drives. The U1000 tops the performance of general-purpose AC drives to further improve the performance of your facilities.


Matrix Converter U1000


## Matrix Innovation

## [What Is a Matrix Converter?]

A matrix converter is AC/AC converter which consists of 9 bi-directional switches that are arranged in a matrix. It converts a three-phase AC power supply directly into the required voltage and frequency.


## Reuse the Previously Wasted Energy with a New Way to Save Energy <br>  <br> High-efficiency Motors <br> Power Regeneration <br> 

## Low Harmonics

## The Pursuit of Power

Quality!
Power Supply Current Waveform

Power Supply
Current Waveform

Product Lineup

Model Selection

Parameter List

Basic Instructions

Standard Specifications

Standard Connection Diagram

Dimensions

26
Fully-Enclosed Design

28

Peripheral Devices and Options

Application Notes

Global Service Network

Compact
All-in-One Unit|
Motor Drive

Power
regeneration to
save energy

## Power Regeneration to Save Energy!

When a motor rotates, it consumes energy. When a motor is rotated, it generates energy.
You can save energy by using regenerative energy instead of wasting it.

## Regenerative Energy

L Lifts, such as cranes


Gravity rotates
the motor when the load is lowered.

- Horizontal conveyors, such as dollies


Inertia rotates the motor when the dolly decelerates or is stopped.


Wind, water, or another external force rotates a motor.


## Efficient Energy Usage

Braking resistor results in discarding energy as heat, but you can return this regenerative energy to the power supply to save energy.


## You Can Save This Much!

【Example of the Effectiveness of Regenerative Energy Savings】
-Operation Cycle
10-t crane
$16 \mathrm{~m} / \mathrm{min}$ Speed

© Annual Power Consumption
© Annual Cost of Power
Previous configuration: $\$ 2,030$
U1000: \$9,40

## Reduction $5,450 \mathrm{kwh}$

Previous configuration:10,150kWh
U1000: 4,700kWh

## -



## Reduction \$1,090

## Visualizing Savings in Electricity

Use analog outputs or communications networks to monitor all sorts of data with easy operations. You'll instantly see the energy that you've saved.


## Low Harmonics!

Without peripheral devices, the input current waveform becomes sinusoidal, similar to that of a commercial power supply, so the harmonic pollution of the power supply is minimized for the protection of surrounding machinery. The available power system capacity can be increased, and the regulations on harmonics easily met.

## Harmonics

When an AC drive converts power, the input current is distorted, which results in harmonics.
These harmonics can interfere with other electric devices, such as by causing overheating or damage to power supply facilities and malfunction and noise in precision devices.


## n Reduce Power Supply Capacity

The power factor is high, so you can use a lower power supply capacity.
You can also downsize wires and generator capacity, and may qualify for price benefits from your power company.



## Compact All-in-One Unit!

Harmonic countermeasures that were previously required to connect a converter, such as input AC reactors, harmonic filter reactors, and capacitors, are not necessary, which helps you save wiring, space, and energy costs.

```
Previous configuration
```



How's This for Compact!
[Control Panel Configuration Example】 Unit:mm


## Even Better Than Previous Matrix Converters!

## Drives Synchronous Motors

All types of motors can be controlled, including induction motors and IPM/SPM synchronous motors, without using sensors.


## Wide Product Lineup

We've increased the number of $200-\mathrm{V}$-class models from 4 to 10 and the number of $400-\mathrm{V}$-class models from 7 to 23 .

## Compliance with SIL3 Safety Standard

SIL3 compliance eliminates the need for magnetic contactors (MCs).
Refer to page 8 for details.

## High-speed Operation!

Output frequencies are supported up to 400 Hz .

## Solve Noise Problems!

Models are available with built-in EMC noise filters to reduce noise generated by AC drives.

## Improved Power Factor

The high power factor allows you to reduce the power supply capacity. Refer to page 5 for details.


## Cutting-Edge Torque Characteristics

Powerful torque at 0 Hz , without a motor encoder* Once out of reach for AC drives, Yaskawa now offers advanced control features without a motor encoder. Achieve even more powerful starting torque at zero speed with an IPM motor.

* No speed sensors or pole sensors required.


## Synchronous Motor

Advanced Open Loop Vector Control for PM
200\% rated torque at 0 r/min*1,
speed range of 1: 100*2
Note: Valid when high frequency injection is enabled (n8-57=1).
Closed Loop Vector Control for PM
$200 \%$ rated torque at $0 \mathrm{r} / \mathrm{min}^{* 1}$,
speed range of 1: 1500

© High-performance current vector control achieves powerful starting torque with an induction motor.

[5) Induction Motor | *Achieving this torgue output |
| :---: |
| requires a harger capacaity |
| models. |

Open Loop Vector Control
$200 \%$ rated torque at $0.3 \mathrm{~Hz}^{*}$, speed range of 1:200
*1: Achieving this torque output requires a larger capacity models.
*2: Contact your Yaskawa or nearest agent when using PM motors except SSR1 series or SST4 series motors manufactured by Yaskawa Motor Co., Ltd.

Closed Loop Vector Control
$200 \%$ rated torque at $0 \mathrm{r} / \mathrm{min}^{*}$, speed range of $1: 1500$

## Environmental Features

Protective Design
A variety of protective designs are available to reinforce the drive against moisture, dust, oil mist, vibration, corrosive sulfur gas, conductive particles, and other harsh environments.

## RoHS

All standard products are fully compliant with the EU's RoHS directive.
(Specify as an option when ordering.)

Models with built-in 24-V power supply units are available.
(Specify as an option when ordering.)

## Safety

Safety Regulations
(0) The products comply with ISO/EN13849-1 Cat. 3 Ple and IEC/EN61508 SIL3 (two safety inputs and one EDM output).
(O) An External Device Monitor (EDM) function has also been added to monitor the safety status of the drive.
() Safety function eliminates the need for the two magnetic contactors that were previously required.


Special models are available for specific applications, such as cranes or elevators.

## Customize Your Drive

© DriveWorksEZ visual programming tool with all models
Simply drag and drop icons to completely customize your drive.
Create special sequences and detection functions, then load them onto the drive.

- Program a customized sequence

Example : Positioning control without a motor encoder


U1000


Time (s)

- USB for connecting to a PC

Example: Machine weakening analysis using torque pulse detection

U1000 Motor
© USB for connecting to a PC

Note: Drives are also equipped with an RJ-45 comm. port that takes the existing WV103 cable used in Yaskawa's previous models. Simply remove the operator keypad for to the RJ-45 connector.

USB port lets the drive connect to a PC


## Easy Maintenance

## Removable Terminal Board with a Parameter Backup Function

(o) The terminal block's ability to save parameter setting data makes it a breeze to get the application back online in the event of a failure requiring drive replacement.


| Parameter |  |  |
| :---: | :---: | :---: |
| Name | Number | Setting |
| ND/HD Selection | C6-01 | 1 |
| Control Mode Selection 1 | A1-02 | 0 |
|  | b1-01 | 1 |
| Run Command Selection 1 | b1-02 | 1 |
|  |  |  |

No Main Circuit Capacitor Means No Maintenance

## Parameter Copy Function

© All standard models are equipped with a Parameter Copy function using the keypad that allows parameter settings to be easily copied from the drive or uploaded for quick setup.
© A USB Copy Unit is also available as an even faster, more convenient way to back up settings and instantly program the drive.

## Engineering Tool DriveWizard Plus

() Manage the unique settings for all your drives right on your PC.
(O) An indispensable tool for drive setup and maintenance. Edit parameters, access all monitors, create customized operation sequences, and observe drive performance with the oscilloscope function.

| Comparison with Conventional Inverters |  |  |  | $\underset{\substack{\text { Cifieater } \\ \text { fiticincy }}}{\substack{2}}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U1000 | $\bigcirc$ ) Matrix Converter $\overline{=(M)}$ |  |  |  | O | O | © |
| Sine-Wave Converter General-Purpose Inverter |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | © | $\triangle$ | $\triangle$ |
| General-Purpose Inverter |  | $\triangle$ | $\triangle$ | $\bigcirc$ | $\times$ | $\triangle$ | $\triangle$ |




## Product Lineup



Note: The CIMR-U $\square 4$ A0477 to CIMR-U $\square 4 \mathrm{~A} 0930$ are in preparation.

Model Number Key


## Model Selection

## Optimizing Control for Each Application

U1000 offers two separate performance ratings: Normal Duty and Heavy Duty.
Difference between load ratings:

|  | Normal Duty Rating | Heavy Duty Rating |
| :---: | :---: | :---: |
| Parameter settings | C6-01=1 | C6-01=0 (default) |
| Overload tolerance | $120 \%$ for 60 s | $150 \%$ for 60 s |

## Normal Duty Applications

- Applications



## Pump

- Applications

Conveyor


- Selecting a Drive

For a conveyor application motor, set the drive for Heavy Duty (default).


For a fan application motor, set the drive for Normal Duty (C6-01 = 1).


| Function | No. | Name | Range | Default | Changes during Run |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A1-00 | Language Selection | 0 to 12 | 1 | $\bigcirc$ |
|  | A1-01 | Access Level Selection | 0 to 2 | 2 | $\bigcirc$ |
|  | A1-02 | Control Method Selection | 0,1,2,3,5,6,7 | 2 | $\times$ |
|  | A1-03 | Initialize Parameters | 0 to 5550 | 0 | $\times$ |
|  | A1-04 | Password | 0 to 9999 | 0000 | $\times$ |
|  | A1-05 | Password Setting | 0 to 9999 | 0000 | $\times$ |
|  | A1-06 | Application Preset | 0 to 7 | 0 | $\times$ |
|  | A1-07 | DriveWorksEZ Function Selection | 0 to 2 | 0 | $\times$ |
|  | $\begin{array}{\|l} \text { A2-01 to } \\ \text { A2-32 } \end{array}$ | User Parameters 1 to 32 | $\begin{aligned} & \text { A1-00 to } \\ & \text { o4-13 } \end{aligned}$ | *1 | $\times$ |
|  | A2-33 | User Parameter Automatic Selection | 0,1 | $\begin{gathered} \text { dep. On } \\ \text { A1-06 } \\ \hline \end{gathered}$ | $\times$ |
|  | b1-01 | Frequency Reference Selection 1 | 0 to 4 | 1 | $\times$ |
|  | b1-02 | Run Command Selection 1 | 0 to 3 | 1 | $\times$ |
|  | b1-03 | Stopping Method Selection | 0 to 3*2 | 0 | $\times$ |
|  | b1-04 | Reverse Operation Selection | 0,1 | 0 | $\times$ |
|  | b1-05 | Action Selection below Minimum Output Frequency | 0 to 3 | 0 | $\times$ |
|  | b1-06 | Digital Input Reading | 0,1 | 1 | $\times$ |
|  | b1-07 | LOCAL/REMOTE Run Selection | 0,1 | 0 | $\times$ |
|  | b1-08 | Run Command Selection while in Programming Mode | 0 to 2 | 0 | $\times$ |
|  | b1-14 | Phase Order Selection | 0,1 | 0 | $\times$ |
|  | b1-15 | Frequency Reference Selection 2 | 0 to 4 | 0 | $\times$ |
|  | b1-16 | Run Command Selection 2 | 0 to 3 | 0 | $\times$ |
|  | b1-17 | Run Command at Power Up | 0,1 | 0 | $\times$ |
|  | b1-21 | Start Condition Selection at Closed Loop Vector Control | 0,1 | 0 | $\times$ |
|  | b1-24 | Commercial Power Operation Switching Selection | 0,1 | 0 | $\times$ |
|  | b1-25 | Commercial Power Supply Operation Cancellation Level | 0.4 to 6.0 | 1.0 Hz | $\times$ |
|  | b1-26 | Commercial Power Supply Operation Switching Level | 0.0 to 3.0 | 0.2 Hz | $\times$ |
|  | b2-01 | DC Injection Braking Start Frequency | 0.0 to 10.0 | *2 | $\times$ |
|  | b2-02 | DC Injection Braking Current | 0 to 100 | 50\% | $\times$ |
|  | b2-03 | DC Injection Braking Time at Start | 0.00 to 10.00 | 0.00 s | $\times$ |
|  | b2-04 | DC Injection Braking Time at Stop | 0.00 to 10.00 | *2 | $\times$ |
|  | b2-08 | Magnetic Flux Compensation Value | 0 to 1000 | 0\% | $\times$ |
|  | b3-01 | Speed Search Selection at Start | 0,1 | *2 | $\times$ |
|  | b3-03 | Speed Search Deceleration Time | 0.1 to 10.0 | 2.0 s | $\times$ |
|  | b3-04 | V/f Gain during Speed Search (Speed Estimation type) | 10 to 100 | *1 | $\times$ |
|  | b3-05 | Speed Search Delay Time | 0.0 to 100.0 | 0.2 s | $\times$ |
|  | b3-06 | Output Current 1 during Speed Search (Speed Estimation Type) | 0.0 to 2.0 | *3 | $\times$ |
|  | b3-08 | Current Control Gain during Speed Search (Speed Estimation Type) | 0.00 to 6.00 | *1 | $\times$ |
|  | b3-10 | Speed Search Detection Compensation Gain (Speed Estimation Type) | 1.00 to 1.20 | 1.05 | $\times$ |
|  | b3-14 | Bi-Directional Speed Search Selection (Speed Estimation Type) | 0,1 | *2 | $\times$ |
|  | b3-17 | Speed Search Restart Current Level (Speed Estimation Type) | 0 to 200 | 150\% | $\times$ |
|  | b3-18 | Speed Search Restart Detection Time (Speed Estimation Type) | 0.00 to 1.00 | 0.10 s | $\times$ |
|  | b3-19 | Number of Speed Search Restarts (Speed Estimation Type) | 0 to 10 | 3 | $\times$ |
|  | b3-24 | Speed Search Method Selection | 1,2 | 2 | $\times$ |
|  | b3-25 | Speed Search Wait Time (Speed Estimation Type) | 0.0 to 30.0 | 0.5 s | $\times$ |
|  | b3-27 | Start Speed Search Select | 0,1 | 0 | $\times$ |
|  | b3-29 | Speed Search Induced Voltage Level | 0 to 10 | 10\% | $\times$ |
|  | b3-31 | Speed Seach Opparion Curent Level 1 (Curent Detection 2) | 1.50 to 3.50 | 1.50 | $\times$ |
|  | b3-32 | Speed Seach Operation Curent Level2 2 Curenen Deiection 2) | 0.00 to 1.49 | 1.20 | $\times$ |
|  | b3-33 | Speed Search Selection when Run Command is Input in Uv | 0,1 | 0 | $\times$ |
|  | b3-50 | Backspin Search Direction Judgment Time 1 | 0.0 to 10.0 | 0.0 s | $\times$ |
|  | b3-51 | Backspin Search Direction Judgment Time 2 | 0.0 to 10.0 | 0.0 s | $\times$ |
|  | b3-52 | Backspin Search Deceleration Time 1 | 0.1 to 10.0 | 2.0 s | $\times$ |
|  | b3-53 | Backspin Search Deceleration Time 2 | 0.1 to 10.0 | 2.0 s | $\times$ |
|  | b4-01 | Timer Function On-Delay Time | 0.0 to 3000.0 | 0.0 s | $\times$ |
|  | b4-02 | Timer Function Off-Delay Time | 0.0 to 3000.0 | 0.0 s | $\times$ |
|  | b4-03 | H2-01 ON Delay Time | 0 to 65536 ms | 0 ms | $\times$ |
|  | b4-04 | H2-01 OFF Delay Time | 0 to 65536 ms | 0 ms | $\times$ |
|  | b4-05 | H2-02 ON Delay Time | 0 to 65536 ms | 0 ms | $\times$ |
|  | b4-06 | H2-02 OFF Delay Time | 0 to 65536 ms | 0 ms | $\times$ |
|  | b4-07 | H2-03 ON Delay Time | 0 to 65536 ms | 0 ms | $\times$ |
|  | b4-08 | H2-03 OFF Delay Time | 0 to 65536 ms | 0 ms | $\times$ |


| Function | No. | Name | Range | Default | Changes during Run |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 우 } \\ & \text { O} \\ & 0 \\ & \text { 음 } \end{aligned}$ | b5-01 | PID Function Setting | 0 to 8 | 0 | $\times$ |
|  | b5-02 | Proportional Gain Setting (P) | 0.00 to 25.00 | 1.00 | $\bigcirc$ |
|  | b5-03 | Integral Time Setting (I) | 0.0 to 360.0 | 1.0 s | $\bigcirc$ |
|  | b5-04 | Integral Limit Setting | 0.0 to 100.0 | 100.0\% | $\bigcirc$ |
|  | b5-05 | Derivative Time (D) | 0.00 to 10.00 | 0.00 s | $\bigcirc$ |
|  | b5-06 | PID Output Limit | 0.0 to 100.0 | 100.0\% | $\bigcirc$ |
|  | b5-07 | PID Offset Adjustment | -100.0 to +100.0 | 0.0\% | $\bigcirc$ |
|  | b5-08 | PID Primary Delay Time Constant | 0.00 to 10.00 | 0.00 s | $\bigcirc$ |
|  | b5-09 | PID Output Level Selection | 0,1 | 0 | $\times$ |
|  | b5-10 | PID Output Gain Setting | 0.00 to 25.00 | 1.00 | $\bigcirc$ |
|  | b5-11 | PID Output Reverse Selection | 0,1 | 0 | $\times$ |
|  | b5-12 | PID Feedback Loss Detection Selection | 0 to 5 | 0 | $\times$ |
|  | b5-13 | PID Feedback Low Detection Level | 0 to 100 | 0\% | $\times$ |
|  | b5-14 | PID Feedback Low Detection Time | 0.0 to 25.5 | 1.0 s | $\times$ |
|  | b5-15 | PID Sleep Function Start Level | 0.0 to 400.0*2 | *2 | $\times$ |
|  | b5-16 | PID Sleep Delay Time | 0.0 to 25.5 | 0.0 s | $\times$ |
|  | b5-17 | PID Accel/Decel Time | 0.0 to 6000.0 | 0.0 s | $\times$ |
|  | b5-18 | PID Setpoint Selection | 0,1 | 0 | $\times$ |
|  | b5-19 | PID Setpoint Value | 0.00 to 100.00 | 0.00\% | $\bigcirc$ |
|  | b5-20 | PID Setpoint Scaling | 0 to 3 | 1 | $\times$ |
|  | b5-34 | PID Output Lower Limit | -100.0 to +100.0 | 0.0\% | $\bigcirc$ |
|  | b5-35 | PID Input Limit | 0.0 to 1000.0 | 1000.0\% | $\bigcirc$ |
|  | b5-36 | PID Feedback High Detection Level | 0 to 100 | 100\% | $\times$ |
|  | b5-37 | PID Feedback High Detection Time | 0.0 to 25.5 | 1.0 s | $\times$ |
|  | b5-38 | PID Setpoint User Display | 1 to 60000 | dep. On | $\times$ |
|  | b5-39 | PID Setpoint Display Digits | 0 to 3 | b5-20 | $\times$ |
|  | b5-40 | Frequency Reference Monitor Content during PID | 0,1 | 0 | $\times$ |
|  | b5-47 | PID Output Reverse Selection 2 | 0,1 | 1 | $\times$ |
|  | b6-01 | Dwell Reference at Start | 0.0 to 400.0*2 | *2 | $\times$ |
|  | b6-02 | Dwell Time at Start | 0.0 to 10.0 | 0.0 s | $\times$ |
|  | b6-03 | Dwell Reference at Stop | 0.0 to 400.0*2 | *2 | $\times$ |
|  | b6-04 | Dwell Time at Stop | 0.0 to 10.0 | 0.0s | $\times$ |
| $\begin{aligned} & \text { 은 } \\ & \text { 응 } \end{aligned}$ | b7-01 | Droop Control Gain | 0.0 to 100.0 | 0.0\% | $\bigcirc$ |
|  | b7-02 | Droop Control Delay Time | 0.03 to 2.00 | 0.05 s | $\bigcirc$ |
|  | b7-03 | Droop Control Limit Selection | 0,1 | 1 | $\times$ |
|  | b8-01 | Energy Saving Control Selection | 0,1 | *2 | $\times$ |
|  | b8-02 | Energy Saving Gain | 0.0 to 10.0 | *2 | $\bigcirc$ |
|  | b8-03 | Energy Saving Control Filter Time Constant | 0.00 to 10.00 | *1 | $\bigcirc$ |
|  | b8-04 | Energy Saving Coefficient Value | 0.00 to 655.00 | *1 | $\times$ |
|  | b8-05 | Power Detection Filter Time | 0 to 2000 | 20 ms | $\times$ |
|  | b8-06 | Search Operation Voltage Limit | 0 to 100 | 0\% | $\times$ |
|  | b8-16 | Energy Saving Parameter (Ki) for PM Motors | 0.00 to 3.00 | 1.00 | $\times$ |
|  | b8-17 | Energy Saving Parameter (Kt) for PM Motors | 0.00 to 3.00 | 1.00 | $\times$ |
| $$ | b9-01 | Zero Servo Gain | 0 to 100 | 5 | $\times$ |
|  | b9-02 | Zero Servo Completion Width | 0 to 16383 | 10 | $\times$ |
|  | C1-01 | Acceleration Time 1 | 0.0 to 6000.0*1 | 10.0 s | $\bigcirc$ |
|  | C1-02 | Deceleration Time 1 | 0.0 to 6000.0*1 | 10.0 s | $\bigcirc$ |
|  | C1-03 | Acceleration Time 2 | 0.0 to 6000.0*1 | 10.0 s | $\bigcirc$ |
|  | C1-04 | Deceleration Time 2 | 0.0 to 6000.0*1 | 10.0 s | $\bigcirc$ |
|  | C1-05 | Acceleration Time 3 (Motor 2 Accel Time 1) | 0.0 to 6000.0*1 | 10.0 s | $\bigcirc$ |
|  | C1-06 | Deceleration Time 3 (Motor 2 Decel Time 1) | 0.0 to 6000.0*1 | 10.0 s | $\bigcirc$ |
|  | C1-07 | Acceleration Time 4 (Motor 2 Accel Time 2) | 0.0 to 6000.0*1 | 10.0 s | $\bigcirc$ |
|  | C1-08 | Deceleration Time 4 (Motor 2 Decel Time 2) | 0.0 to 6000.0*1 | 10.0 s | $\bigcirc$ |
|  | C1-09 | Fast Stop Time | 0.0 to 6000.0*1 | 10.0 s | $\bigcirc$ |
|  | C1-10 | Accel/Decel Time Setting Units | 0,1 | 1 | $\times$ |
|  | C1-11 | Accel/Decel Time Switching Frequency | 0.0 to 400.0 | *2 | $\times$ |
|  | C2-01 | S-Curve Characteristic at Accel Start | 0.00 to 10.00 | *2 | $\times$ |
|  | C2-02 | S-Curve Characteristic at Accel End | 0.00 to 10.00 | 0.20 s | $\times$ |
|  | C2-03 | S-Curve Characteristic at Decel Start | 0.00 to 10.00 | 0.20 s | $\times$ |
|  | C2-04 | S-Curve Characteristic at Decel End | 0.00 to 10.00 | 0.00 s | $\times$ |
|  | C3-01 | Slip Compensation Gain | 0.0 to 2.5 | *2 | $\bigcirc$ |
|  | C3-02 | Slip Compensation Primary Delay Time | 0 to 10000 | *2 | $\bigcirc$ |
|  | C3-03 | Slip Compensation Limit | 0 to 250 | 200\% | $\times$ |


| Function | No. | Name | Range | Default | Changes during Run |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | C3-04 | Slip Compensation Selection during Regeneration | 0 to 2 | 0 | $\times$ |
|  | C3-05 | Output Voltage Limit Operation Selection | 0,1 | 0 | $\times$ |
|  | C3-21 | Motor 2 Slip Compensation Gain | 0.0 to 2.5 | $\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { E3-01 } \\ \hline \end{array}$ | $\bigcirc$ |
|  | C3-22 | Motor 2 Slip Compensation Primary Delay Time | 0 to 10000 | $\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { E3-01 } \\ \hline \end{array}$ | $\bigcirc$ |
|  | C3-23 | Motor 2 Slip Compensation Limit | 0 to 250 | $\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { E3-01 } \\ \hline \end{array}$ | $\times$ |
|  | C3-24 | Motor 2 Slip Compensation Selection during Regeneration | 0 to 2 | $\begin{array}{\|c} \hline \text { dep. On } \\ \text { E3-01 } \\ \hline \end{array}$ | $\times$ |
|  | C4-01 | Torque Compensation Gain | 0.00 to 2.50 | *2 | $\bigcirc$ |
|  | C4-02 | Torque Compensation Primary Delay Time | 0 to 60000 | *1 | $\bigcirc$ |
|  | C4-03 | Torque Compensation at Forward Start | 0.0 to 200.0 | 0.0\% | $\times$ |
|  | C4-04 | Torque Compensation at Reverse Start | -200.0 to 0.0 | 0.0\% | $\times$ |
|  | C4-05 | Torque Compensation Time Constant | 0 to 200 | 10 ms | $\times$ |
|  | C4-07 | Motor 2 Torque Compensation Gain | 0.00 to 2.50 | 1.00 | $\bigcirc$ |
|  | C5-01 | ASR Proportional Gain 1 | $\begin{aligned} & 0.00 \text { to } \\ & 300.00 \end{aligned}$ | *2 | $\bigcirc$ |
|  | C5-02 | ASR Integral Time 1 | $\begin{gathered} 0.000 \text { to } \\ 10.000 \\ \hline \end{gathered}$ | *2 | $\bigcirc$ |
|  | C5-03 | ASR Proportional Gain 2 | $\begin{aligned} & 0.00 \text { to } \\ & 300.00 \end{aligned}$ | *2 | $\bigcirc$ |
|  | C5-04 | ASR Integral Time 2 | $\begin{gathered} 0.000 \text { to } \\ 10.000 \end{gathered}$ | *2 | $\bigcirc$ |
|  | C5-05 | ASR Limit | 0.0 to 20.0 | 5.0\% | $\times$ |
|  | C5-06 | ASR Primary Delay Time Constant | $\begin{gathered} 0.000 \text { to } \\ 0.500 \\ \hline \end{gathered}$ | *2 | $\times$ |
|  | C5-07 | ASR Gain Switching Freque | 0.0 to 400.0*2 | *2 | $\times$ |
|  | C5-08 | ASR Integral Limit | 0 to 400 | 400\% | $\times$ |
|  | C5-12 | Integral Operation during Accel/ Decel | 0,1 | 0 | $\times$ |
|  | C5-17 | Motor Inertia | $\begin{aligned} & \hline 0.0001 \text { to } \\ & 600.00 \end{aligned}$ | *1 | $\times$ |
|  | C5-18 | Load Inertia Ratio | 0.0 to 6000.0 | 1.0 | $\times$ |
|  | C5-21 | Motor 2 ASR Proportional Gain 1 | $\begin{aligned} & 0.00 \text { to } \\ & 300.00 \end{aligned}$ | $\begin{gathered} \text { dep. On } \\ \text { E3-01 } \end{gathered}$ | $\bigcirc$ |
|  | C5-22 | Motor 2 ASR Integral Time 1 | $\begin{aligned} & 0.000 \text { to } \\ & 10.000 \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { E3-01 } \\ \hline \end{array}$ | $\bigcirc$ |
|  | C5-23 | Motor 2 ASR Proportional Gain 2 | $\begin{aligned} & \hline 0.00 \text { to } \\ & 300.00 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \text { dep. On } \\ \text { E3-01 } \\ \hline \end{gathered}$ | $\bigcirc$ |
|  | C5-24 | Motor 2 ASR Integral Time 2 | $\begin{gathered} 0.000 \text { to } \\ 10.000 \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { E3-01 } \\ \hline \end{array}$ | $\bigcirc$ |
|  | C5-25 | Motor 2 ASR Limit | 0.0 to 20.0 | 5.0\% | $\times$ |
|  | C5-26 | Motor 2 ASR Primary Delay Time Constant | $\begin{gathered} 0.000 \text { to } \\ 0.500 \end{gathered}$ | $\begin{gathered} \text { dep. On } \\ \text { E3-01 } \end{gathered}$ | $\times$ |
|  | C5-27 | Motor 2 ASR Gain Switching Frequency | 0.0 to 400.0 | 0.0Hz | $\times$ |
|  | C5-28 | Motor 2 ASR Integral Limit | 0 to 400 | 400\% | $\times$ |
|  | C5-29 | Speed Response Selection | 0,1 | 0 | $\times$ |
|  | C5-32 | Integral Operation during Accel/ Decel for Motor 2 | 0,1 | 0 | $\times$ |
|  | C5-37 | Motor 2 Inertia | $\begin{aligned} & 0.0001 \text { to } \\ & 600.00 \end{aligned}$ | *1 | $\times$ |
|  | C5-38 | Motor 2 Load Inertia Ratio | 0.0 to 6000.0 | 1.0 | $\times$ |
|  | C6-01 | Drive Duty Mode Selection | 0,1 | 0 | $\times$ |
|  | C6-02 | Carrier Frequency Selection | 1 to 4,F | *1 | $\times$ |
|  | C6-03 | Carrier Frequency Upper Limit | 4.0 to 10.0*1 | *1 | $\times$ |
|  | C6-04 | Carrier Frequency Lower Limit | 4.0 to 10.0*1 | *1 | $\times$ |
|  | C6-05 | Carrier Frequency Proportional Gain | 0 to 99 | *1 | $\times$ |
|  | C6-09 | Carrier Frequency during Rotational Auto-Tuning | 0,1 | 0 | $\times$ |
|  | C7-43 | Input Voltage Offset Adjustment | 0000,0002 | 0000 | $\times$ |
|  | C7-56 | Power Factor Control Selection | 0,1 | 0 | $\times$ |
|  | C7-60 | Output Voltage Limit Mode Selection | 0,1 | 1 | $\times$ |


| Function | No. | Name | Range | Default | $\begin{aligned} & \hline \begin{array}{l} \text { Changes } \\ \text { during } \\ \text { Run } \end{array} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | d1-01 | Frequency Reference 1 | $\begin{aligned} & 0.00 \text { to } \\ & 400.00 \end{aligned}$ | $\begin{gathered} 0.00 \\ \mathrm{~Hz} \end{gathered}$ | $\bigcirc$ |
|  | d1-02 | Frequency Reference 2 |  |  | $\bigcirc$ |
|  | d1-03 | Frequency Reference 3 |  |  | $\bigcirc$ |
|  | d1-04 | Frequency Reference 4 |  |  | $\bigcirc$ |
|  | d1-05 | Frequency Reference 5 |  |  | $\bigcirc$ |
|  | d1-06 | Frequency Reference 6 |  |  | $\bigcirc$ |
|  | d1-07 | Frequency Reference 7 |  |  | $\bigcirc$ |
|  | d1-08 | Frequency Reference 8 |  |  | $\bigcirc$ |
|  | d1-09 | Frequency Reference 9 |  |  | $\bigcirc$ |
|  | d1-10 | Frequency Reference 10 |  |  | $\bigcirc$ |
|  | d1-11 | Frequency Reference 11 |  |  | $\bigcirc$ |
|  | d1-12 | Frequency Reference 12 |  |  | $\bigcirc$ |
|  | d1-13 | Frequency Reference 13 |  |  | $\bigcirc$ |
|  | d1-14 | Frequency Reference 14 |  |  | $\bigcirc$ |
|  | d1-15 | Frequency Reference 15 |  |  | $\bigcirc$ |
|  | d1-16 | Frequency Reference 16 |  |  | $\bigcirc$ |
|  | d1-17 | Jog Frequency Reference |  | 6.00 Hz | $\bigcirc$ |
|  | d2-01 | Frequency Reference Upper Limit | 0.0 to 110.0 | 100.0\% | $\times$ |
|  | d2-02 | Frequency Reference Lower Limit | 0.0 to 110.0 | 0.0\% | $\times$ |
|  | d2-03 | Master Speed Reference Lower Limit | 0.0 to 110.0 | 0.0\% | $\times$ |
|  | d3-01 | Jump Frequency 1 | 0.0 to 400.0 | 0.0 Hz | $\times$ |
|  | d3-02 | Jump Frequency 2 |  |  | $\times$ |
|  | d3-03 | Jump Frequency 3 |  |  | $\times$ |
|  | d3-04 | Jump Frequency Width | 0.0 to 20.0 | 1.0 Hz | $\times$ |
|  | d4-01 | Frequency Reference Hold Function Selection | 0,1 | 0 | $\times$ |
|  | d4-03 | Frequency Reference Bias Step (Up/Down 2) | 0.00 to 99.99 | $\begin{gathered} 0.00 \\ \mathrm{~Hz} \\ \hline \end{gathered}$ | $\bigcirc$ |
|  | d4-04 | Frequency Reference Bias Accel/ Decel (Up/Down 2) | 0,1 | 0 | $\bigcirc$ |
|  | d4-05 | Frequency Reference Bias Operation Mode Selection (Up/Down 2) | 0,1 | 0 | $\bigcirc$ |
|  | d4-06 | Frequency Reference Bias (Up/Down 2) | $\begin{aligned} & \hline-99.9 \text { to } \\ & +100.0 \\ & \hline \end{aligned}$ | 0.0\% | $\times$ |
|  | d4-07 | Analog Frequency Reference Fluctuation Limit (Up/Down 2) | 0.1 to 100.0 | 1.0\% | $\bigcirc$ |
|  | d4-08 | Frequency Reference Bias Upper Limit (Up/Down 2) | 0.0 to 100.0 | 100.0\% | $\bigcirc$ |
|  | d4-09 | Frequency Reference Bias Lower Limit (Up/Down 2) | -99.9 to 0.0 | 0.0\% | $\bigcirc$ |
|  | d4-10 | Up/Down Frequency ReferenceLimit Selection | 0,1 | 0 | $\times$ |
|  | d5-01 | Torque Control Selection | 0,1 | 0 | $\times$ |
|  | d5-02 | Torque Reference Delay Time | 0 to 1000 | *2 | $\times$ |
|  | d5-03 | Speed Limit Selection | 1,2 | 1 | $\times$ |
|  | d5-04 | Speed Limit | -120 to +120 | 0\% | $\times$ |
|  | d5-05 | Speed Limit Bias | 0 to 120 | 10\% | $\times$ |
|  | d5-06 | Speed/Torque Control Switchover Time | 0 to 1000 | 0 ms | $\times$ |
|  | d5-08 | Unidirectional Speed Limit Bias | 0,1 | 1 | $\times$ |
|  | d6-01 | Field Weakening Level | 0 to 100 | 80\% | $\times$ |
|  | d6-02 | Field Weakening Frequency Limit | 0.0 to 400.0 | 0.0 Hz | $\times$ |
|  | d6-03 | Field Forcing Selection | 0,1 | 0 | $\times$ |
|  | d6-06 | Field Forcing Limit | 100 to 400 | 400\% | $\times$ |
|  | d7-01 | Offset Frequency 1 | $\begin{aligned} & -100.0 \text { to } \\ & +100.0 \end{aligned}$ | 0.0\% | $\bigcirc$ |
| 告 | d7-02 | Offset Frequency 2 |  |  | $\bigcirc$ |
| - 产 | d7-03 | Offset Frequency 3 |  |  | $\bigcirc$ |
|  | E1-03 | V/f Pattern Selection | 0 to $\mathrm{F}^{* 2}$ | F | $\times$ |
|  | E1-04 | Maximum Output Frequency | $\begin{aligned} & 40.0 \mathrm{to} \\ & 400.0^{* 1} \\ & \hline \end{aligned}$ | *1 | $\times$ |
|  | E1-05 | Maximum Voltage | 0.0 to 255.0*4 | *1,*4 | $\times$ |
|  | E1-06 | Base Frequency | $\begin{gathered} 0.0 \text { to } \\ \mathrm{E} 1-04^{*} 1 \end{gathered}$ | *1 | $\times$ |
|  | E1-07 | Middle Output Frequency | 0.0 to E1-04 | *1 | $\times$ |
|  | E1-08 | Middle Output Frequency Voltage | 0.0 to 255.0*4 | *1,*4 | $\times$ |
|  | E1-09 | Minimum Output Frequency | $\begin{gathered} 0.0 \text { to } \\ \mathrm{E} 1-04^{* 1} \end{gathered}$ | *1 | $\times$ |
|  | E1-10 | Minimum Output Frequency Voltage | 0.0 to 255.0*4 | *1,*4 | $\times$ |


| Function | No. | Name | Range | Default | $\begin{gathered} \text { Changes } \\ \text { during } \\ \text { Run } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | E1-11 | Middle Output Frequency 2 | 0.0 to E1-04 | 0.0 Hz | $\times$ |
|  | E1-12 | Middle Output Frequency Voltage 2 | 0.0 to 255.0*4 | 0.0 V | $\times$ |
|  | E1-13 | Base Voltage | 0.0 to 255.0*4 | $\begin{gathered} 0.0 \mathrm{~V} \\ * 4 \\ \hline \end{gathered}$ | $\times$ |
|  | E2-01 | Motor Rated Current | $10 \%$ to $150 \%$ of the drive rated current | *1 | $\times$ |
|  | E2-02 | Motor Rated Slip | 0.00 to 20.00 | *1 | $\times$ |
|  | E2-03 | Motor No-Load Current | 0 to E2-01 | *1 | $\times$ |
|  | E2-04 | Number of Motor Poles | 2 to 48 | 4 | $\times$ |
|  | E2-05 | Motor Line-to-Line Resistance | $\begin{aligned} & 0.000 \text { to } \\ & 65.000 * 1 \end{aligned}$ | *1 | $\times$ |
|  | E2-06 | Motor Leakage Inductance | 0.0 to 40.0 | *1 | $\times$ |
|  | E2-07 | Motor Iron-Core Saturation Coefficient 1 | 0.00 to 0.50 | 0.50 | $\times$ |
|  | E2-08 | Motor Iron-Core Saturation Coefficient 2 | E2-07 to 0.75 | 0.75 | $\times$ |
|  | E2-09 | Motor Mechanical Loss | 0.0 to 10.0 | 0.0\% | $\times$ |
|  | E2-10 | Motor Iron Loss for Torque Compensation | 0 to 65535 | *1 | $\times$ |
|  | E2-11 | Motor Rated Power | 0.00 to 650.00 | *1 | $\times$ |
|  | E3-01 | Motor 2 Control Mode Selection | 0 to 3 | 0 | $\times$ |
|  | E3-04 | Motor 2 Max. Output Frequency | 40.0 to 400.0 | $\begin{gathered} \text { dep. On } \\ \text { E3-01 } \end{gathered}$ | $\times$ |
|  | E3-05 | Motor 2 Max. Voltage | 0.0 to 255.0*4 | $\begin{aligned} & \text { dep. On } \\ & \text { E3-01*4 } \end{aligned}$ | $\times$ |
|  | E3-06 | Motor 2 Base Frequency | 0.0 to E3-04 | $\begin{gathered} \text { dep. On } \\ \text { E3-01 } \end{gathered}$ | $\times$ |
|  | E3-07 | Motor 2 Mid Output Frequency | 0.0 to E3-04 | $\begin{gathered} \text { dep. On } \\ \text { E3-01 } \end{gathered}$ | $\times$ |
|  | E3-08 | Motor 2 Mid Output Frequency Voltage | 0.0 to 255.0*4 | $\begin{aligned} & \text { dep. On } \\ & \mathrm{E} 3-01 * 4 \end{aligned}$ | $\times$ |
|  | E3-09 | Motor 2 Minimum Output Frequency | 0.0 to E3-04 | $\begin{gathered} \text { dep. On } \\ \text { E3-01 } \end{gathered}$ | $\times$ |
|  | E3-10 | Motor 2 Minimum Output Frequency Voltage | 0.0 to 255.0*4 | $\begin{aligned} & \text { dep. On } \\ & \text { E3-01*4 } \end{aligned}$ | $\times$ |
|  | E3-11 | Motor 2 Mid Output Frequency 2 | 0.0 to E3-04 | 0.0 Hz | $\times$ |
|  | E3-12 | Motor 2 Mid Output Frequency Voltage 2 | 0.0 to 255.0*4 | $\begin{aligned} & 0.0 \mathrm{~V} \\ & * 1, * 4 \end{aligned}$ | $\times$ |
|  | E3-13 | Motor 2 Base Voltage | 0.0 to 255.0*4 | $\begin{aligned} & 0.0 \mathrm{~V} \\ & * 1, * 4 \end{aligned}$ | $\times$ |
|  | E4-01 | Motor 2 Rated Current | $\begin{aligned} & 10 \% \text { to } 150 \% \\ & \text { of the drive } \\ & \text { rated current } \end{aligned}$ | *1 | $\times$ |
|  | E4-02 | Motor 2 Rated Slip | 0.00 to 20.00 | *1 | $\times$ |
|  | E4-03 | Motor 2 No-Load Current | 0 to E4-01 | *1 | $\times$ |
|  | E4-04 | Motor 2 Motor Poles | 2 to 48 | 4 | $\times$ |
|  | E4-05 | Motor 2 Line-to-Line Resistance | $\begin{aligned} & 0.000 \mathrm{to} \\ & 65.000^{* 1} \\ & \hline \end{aligned}$ | *1 | $\times$ |
|  | E4-06 | Motor 2 Leakage Inductance | 0.0 to 40.0 | *1 | $\times$ |
|  | E4-07 | Motor 2 Motor Iron-Core Saturation Coefficient 1 | 0.00 to 0.50 | 0.50 | $\times$ |
|  | E4-08 | Motor 2 Motor Iron-Core Saturation Coefficient 2 | E4-07 to 0.75 | 0.75 | $\times$ |
|  | E4-09 | Motor 2 Mechanical Loss | 0.0 to 10.0 | 0.0\% | $\times$ |
|  | E4-10 | Motor 2 Iron Loss | 0 to 65535 | *1 | $\times$ |
|  | E4-11 | Motor 2 Rated Power | $\begin{aligned} & \hline 0.00 \text { to } \\ & 650.00 \\ & \hline \end{aligned}$ | *1 | $\times$ |
|  | E5-01 | Motor Code Selection (for PM Motors) | 0000 to FFFF | *1 | $\times$ |
|  | E5-02 | Motor Rated Power (for PM Motors) | $\begin{aligned} & 0.10 \text { to } \\ & 650.00 \end{aligned}$ | $\begin{gathered} \text { dep. On } \\ \text { E5-01 } \end{gathered}$ | $\times$ |
|  | E5-03 | Motor Rated Current (for PM Motors) | $\begin{gathered} 10 \% \text { to } 150 \% \\ \text { of the drive } \\ \text { rated current } \end{gathered}$ | $\begin{gathered} \text { dep. On } \\ \text { E5-01 } \end{gathered}$ | $\times$ |
|  | E5-04 | Number of Motor Poles (for PM Motors) | 2 to 48 | dep. On E5-01 | $\times$ |
|  | E5-05 | Motor Stator Resistance (r1) (for PM Motors) | $\begin{gathered} 0.000 \text { to } \\ 65.000 \end{gathered}$ | $\begin{gathered} \text { dep. On } \\ \text { E5-01 } \\ \hline \end{gathered}$ | $\times$ |
|  | E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors) | $\begin{aligned} & 0.00 \text { to } \\ & 300.00 \\ & \hline \end{aligned}$ | $\begin{gathered} \text { dep. On } \\ \text { E5-01 } \end{gathered}$ | $\times$ |
|  | E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors) | $\begin{aligned} & \hline 0.00 \text { to } \\ & 600.00 \\ & \hline \end{aligned}$ | dep. On E5-01 | $\times$ |
|  | E5-09 | Motor Induction Voltage Constant 1 (Ke) (for PM Motors) | 0.0 to 2000.0 | $\begin{gathered} \text { dep. On } \\ \text { E5-01 } \\ \hline \end{gathered}$ | $\times$ |


| Function | No. | Name | Range | Default | $\begin{gathered} \text { Changes } \\ \text { during } \\ \text { Run } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | E5-11 | Encoder Z-pulse Offset ( $\Delta \theta$ ) (for PM Motors) | -180 to +180 | $\begin{aligned} & 0.0 \\ & \text { deg } \end{aligned}$ | $\times$ |
|  | E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors) | 0.0 to 6500.0 | $\begin{gathered} \text { dep. On } \\ \text { E5-01 } \end{gathered}$ | $\times$ |
|  | E5-25 | Polarity Switch for Initial Polarity Estimation (for PM Motors) | 0,1 | 0 | $\times$ |
|  | F1-01 | PG 1 Pulses Per Revolution | 0 to 60000 | *2 | $\times$ |
|  | F1-02 | Operation Selection at PG Open Circuit (PGo) | 0 to 4 | 1 | $\times$ |
|  | F1-03 | Operation Selection at Overspeed (oS) | 0 to 3 | 1 | $\times$ |
|  | F1-04 | Operation Selection at Speed Deviation (dEv) | 0 to 3 | 3 | $\times$ |
|  | F1-05 | PG 1 Rotation Selection | 0,1 | *2 | $\times$ |
|  | F1-06 | PG 1 Division Rate for PG Pulse Monitor | $\begin{aligned} & \hline 001 \text { to } 032, \\ & 102 \text { to } 132 \\ & \hline \end{aligned}$ | 1 | $\times$ |
|  | F1-08 | Overspeed Detection Level | 0 to 120 | 115\% | $\times$ |
|  | F1-09 | Overspeed Detection Delay Time | 0.0 to 2.0 | *2 | $\times$ |
|  | F1-10 | Excessive Speed Deviation Detection Level | 0 to 50 | 10\% | $\times$ |
|  | F1-11 | Excessive Speed Deviation Detection Delay Time | 0.0 to 10.0 | 0.5 s | $\times$ |
|  | F1-12 | PG 1 Gear Teeth 1 | 0 to 1000 | 0 | $\times$ |
|  | F1-13 | PG 1 Gear Teeth 2 | 0 to 1000 | 0 | $\times$ |
|  | F1-14 | PG Open-Circuit Detection Time | 0.0 to 10.0 | 2.0 s | $\times$ |
|  | F1-18 | dv3 Detection Selection | 0 to 10 | 10 | $\times$ |
|  | F1-19 | dv4 Detection Selection | 0 to 5000 | 128 | $\times$ |
|  | F1-20 | PG Option Card Disconnect Detection 1 | 0,1 | 1 | $\times$ |
|  | F1-21 | PG 1 Signal Selection | 0,1 | 0 | $\times$ |
|  | F1-30 | PG Card Option Port for Motor 2 Selection | 0,1 | 1 | $\times$ |
|  | F1-31 | PG 2 Pulses Per Revolution | 0 to 60000 | 600 ppr | $\times$ |
|  | F1-32 | PG 2 Rotation Selection | 0,1 | 0 | $\times$ |
|  | F1-33 | PG 2 Gear Teeth 1 | 0 to 1000 | 0 | $\times$ |
|  | F1-34 | PG 2 Gear Teeth 2 | 0 to 1000 | 0 | $\times$ |
|  | F1-35 | PG 2 Division Rate for Pulse Monitor | 1 to 132 | 1 | $\times$ |
|  | F1-36 | PG Option Card Disconnect Detection 2 | 0,1 | 1 | $\times$ |
|  | F1-37 | PG 2 Signal Selection | 0,1 | 0 | $\times$ |
|  | F1-50 | Encoder Selection | 0 to 2 | 0 | $\times$ |
|  | F1-51 | PGoH Detection Level | 1 to 100 | 80\% | $\times$ |
|  | F1-52 | Communication Speed of Serial Encoder Selection | 0 to 3 | 0 | $\times$ |
|  | F2-01 | Analog Input Option Card Operation Selection | 0,1 | 0 | $\times$ |
|  | F2-02 | Analog Input Option Card Gain | $\begin{gathered} -999.9 \text { to } \\ +999.9 \end{gathered}$ | 100.0\% | $\bigcirc$ |
|  | F2-03 | Analog Input Option Card Bias | $\begin{aligned} & -999.9 \text { to } \\ & +999.9 \end{aligned}$ | 0.0\% | $\bigcirc$ |
|  | F3-01 | Digital Input Option Card Input Selection | 0 to 7 | 0 | $\times$ |
|  | F3-03 | Digital Input Option DI-A3 Data Length Selection | 0 to 2 | 2 | $\times$ |
|  | F4-01 | Terminal V1 Monitor Selection | 000 to 999 | 102 | $\times$ |
|  | F4-02 | Terminal V1 Monitor Gain | -999.9 to +999.9 | 100.0\% | $\bigcirc$ |
|  | F4-03 | Terminal V2 Monitor Selection | 000 to 999 | 103 | $\times$ |
|  | F4-04 | Terminal V2 Monitor Gain | -999.9 to +999.9 | 50.0\% | $\bigcirc$ |
|  | F4-05 | Terminal V1 Monitor Bias | -999.9 to +999.9 | 0.0\% | $\bigcirc$ |
|  | F4-06 | Terminal V2 Monitor Bias | -999.9 to +999.9 | 0.0\% | $\bigcirc$ |
|  | F4-07 | Terminal V1 Signal Level | 0,1 | 0 | $\times$ |
|  | F4-08 | Terminal V2 Signal Level | 0,1 | 0 | $\times$ |
|  | F5-01 | Terminal P1-PC Output Selection | 0 to 1A7 | 0 | $\times$ |
|  | F5-02 | Terminal P2-PC Output Selection | 0 to 1A7 | 1 | $\times$ |
|  | F5-03 | Terminal P3-PC Output Selection | 0 to 1A7 | 2 | $\times$ |
|  | F5-04 | Terminal P4-PC Output Selection | 0 to 1A7 | 4 | $\times$ |
|  | F5-05 | Terminal P5-PC Output Selection | 0 to 1A7 | 6 | $\times$ |
|  | F5-06 | Terminal P6-PC Output Selection | 0 to 1A7 | 37 | $\times$ |
|  | F5-07 | Terminal M1-M2 Output Selection | 0 to 1A7 | F | $\times$ |
|  | F5-08 | Terminal M3-M4 Output Selection | 0 to 1A7 | F | $\times$ |
|  | F5-09 | DO-A3 Output Mode Selection | 0 to 2 | 0 | $\times$ |

Note: Footnotes are listed on page 19.

| Function | No. | Name | Range | Default | $\begin{gathered} \text { Changes } \\ \text { during } \\ \text { Run } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | F6-01 | Communications Error Operation Selection | 0 to 3 | 1 | $\times$ |
|  | F6-02 | External Fault from Comm. Option Detection Selection | 0,1 | 0 | $\times$ |
|  | F6-03 | External Fault from Comm. Option Operation Selection | 0 to 3 | 1 | $\times$ |
|  | F6-06 | Torque Reference/Torque Limit Selection from Comm. Option | 0,1 | 0 | $\times$ |
|  | F6-07 | Multi-Step Speed Enable/Disable Selection when NefRef/ComRef is Selected | 0,1 | 0 | $\times$ |
|  | F6-08 | Reset Communication Parameters | 0,1 | 0 | $\times$ |
|  | F6-04, F6-10, <br> F6-11, F6-14 | CC-Link Parameter | - | - | - |
|  | $\begin{array}{\|c} \hline \text { F6-20 to } \\ \text { F6-26 } \\ \hline \end{array}$ | MECHATROLINK-II Parameter | - | - | - |
|  | F6-20, F6-21, F6-23 to F6-26 | MECHATROLINK-III Parameter | - | - | - |
|  | $\begin{array}{\|c\|} \hline \text { F6-30 to } \\ \hline \text { F6-32 } \\ \hline \end{array}$ | PROFIBUS-DP Parameter | - | - | - |
|  | $\begin{aligned} & \hline \text { F6-35, } \\ & \text { F6-36 } \\ & \hline \end{aligned}$ | CANopen Parameter | - | - | - |
|  | $\begin{gathered} \text { F6-50 to } \\ \text { F6-63 } \\ \hline \end{gathered}$ | DeviceNet Parameter | - | - | - |
|  | F7-01 to F7-16. U6-80 to 06.93 U6-98, U6-99 | Modbus TCP/IP Parameter | - | - | - |
|  |  U6.80toube.93 U6-98, U6:99 | EtherNet/IP Parameter | - | - | - |
|  | H1-01 | Multi-Function Digital Input Terminal S1 Function Selection | 1 to 9F | 40(F)*6 | $\times$ |
|  | H1-02 | Multi-Function Digital Input Terminal S2 Function Selection | 1 to 9F | 41(F)*6 | $\times$ |
|  | H1-03 | Multi-Function Digital Input Terminal S3 Function Selection | 0 to 9F | 24 | $\times$ |
|  | H1-04 | Multi-Function Digital Input Terminal S4 Function Selection | 0 to 9F | 14 | $\times$ |
|  | H1-05 | Multi-Function Digital Input Terminal S5 Function Selection | 0 to 9F | 3(0) *6 | $\times$ |
|  | H1-06 | Multi-Function Digital Input Terminal S6 Function Selection | 0 to 9F | 4(3) *6 | $\times$ |
|  | H1-07 | Multi-Function Digital Input Terminal S7 Function Selection | 0 to 9F | 6(4) *6 | $\times$ |
|  | H1-08 | Multi-Function Digital Input Terminal S8 Function Selection | 0 to 9F | 8 | $\times$ |
|  | H2-01 | Terminal M1-M2 Function Selection (Relay) | 0 to 192 | 0 | $\times$ |
|  | H2-02 | Terminal P1-PC Function Selection (Open-collector) | 0 to 192 | 1 | $\times$ |
|  | H2-03 | Terminal P2-PC Function Selection (Open-collector) | 0 to 192 | 2 | $\times$ |
|  | H2-06 | Watt Hour Output Unit Selection | 1 to 4 | 1 | $\times$ |
|  | H2-07 | Memobus Regs1 Address Select | 1 to 1FFFH | 1 | $\times$ |
|  | H2-08 | Memobus Regs1 Bit Select | 0 to FFFFH | 0 | $\times$ |
|  | H2-09 | Memobus Regs2 Address Select | 1 to 1FFFH | 1 | $\times$ |
|  | H2-10 | Memobus Regs2 Bit Select | 0 to FFFFH | 0 | $\times$ |
|  | H3-01 | Terminal A1 Signal Level Selection | 0,1 | 0 | $\times$ |
|  | H3-02 | Terminal A1 Function Selection | 0 to 32 | 0 | $\times$ |
|  | H3-03 | Terminal A1 Gain Setting | -999.9 to +999.9 | 100.0\% | $\bigcirc$ |
|  | H3-04 | Terminal A1 Bias Setting | -999.9 to +999.9 | 0.0\% | $\bigcirc$ |
|  | H3-05 | Terminal A3 Signal Level Selection | 0,1 | 0 | $\times$ |
|  | H3-06 | Terminal A3 Function Selection | 0 to 32 | 2 | $\times$ |
|  | H3-07 | Terminal A3 Gain Setting | -999.9 to +999.9 | 100.0\% | $\bigcirc$ |
|  | H3-08 | Terminal A3 Bias Setting | -999.9 to +999.9 | 0.0\% | $\bigcirc$ |
|  | H3-09 | Terminal A2 Signal Level Selection | 0 to 3 | 2 | $\times$ |
|  | H3-10 | Terminal A2 Function Selection | 0 to 32 | 0 | $\times$ |
|  | H3-11 | Terminal A2 Gain Setting | -999.9 to +999.9 | 100.0\% | $\bigcirc$ |
|  | H3-12 | Terminal A2 Bias Setting | -999.9 to +999.9 | 0.0\% | $\bigcirc$ |
|  | H3-13 | Analog Input Filter Time Constant | 0.00 to 2.00 | 0.03 s | $\times$ |
|  | H3-14 | Analog Input Terminal Enable Selection | 1 to 7 | 7 | $\times$ |
|  | H3-16 | Terminal A1 Offset | -500 to +500 | 0 | $\times$ |
|  | H3-17 | Terminal A2 Offset | -500 to +500 | 0 | $\times$ |
|  | H3-18 | Terminal A3 Offset | -500 to +500 | 0 | $\times$ |


| Function | No. | Name | Range | Default | $\begin{gathered} \text { Changes } \\ \text { during } \\ \text { Run } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | H4-01 | Multi-Function Analog Output Terminal FM Monitor Selection | 000 to 999 | 102 | $\times$ |
|  | H4-02 | Multi-Function Analog Output Terminal FM Gain | $\begin{gathered} -999.9 \text { to } \\ +999.9 \\ \hline \end{gathered}$ | 100.0\% | $\bigcirc$ |
|  | H4-03 | Multi-Function Analog Output Terminal FM Bias | $\begin{aligned} & -999.9 \text { to } \\ & +999.9 \end{aligned}$ | 0.0\% | $\bigcirc$ |
|  | H4-04 | Multi-Function Analog Output Terminal AM Monitor Selection | 000 to 999 | 103 | $\times$ |
|  | H4-05 | Multi-Function Analog Output Terminal AM Gain | $\begin{gathered} -999.9 \text { to } \\ +999.9 \\ \hline \end{gathered}$ | 50.0\% | $\bigcirc$ |
|  | H4-06 | Multi-Function Analog Output Terminal AM Bias | $\begin{gathered} -999.9 \text { to } \\ +999.9 \end{gathered}$ | 0.0\% | $\bigcirc$ |
|  | H4-07 | Multi-Function Analog Output Terminal FM Signal Level Selection | 0,1 | 0 | $\times$ |
|  | H4-08 | Multi-Function Analog Output Terminal AM Signal Level Selection | 0,1 | 0 | $\times$ |
|  | H5-01 | Drive Slave Address | 0 to FFH | 1FH | $\times$ |
|  | H5-02 | Communication Speed Selection | 0 to 8 | 3 | $\times$ |
|  | H5-03 | Communication Parity Selection | 0 to 2 | 0 | $\times$ |
|  | H5-04 | Stopping Method After Communication Error (CE) | 0 to 3 | 3 | $\times$ |
|  | H5-05 | Communication Fault Detection Selection | 0,1 | 1 | $\times$ |
|  | H5-06 | Drive Transmit Wait Time | 5 to 65 | 5 ms | $\times$ |
|  | H5-07 | RTS Control Selection | 0,1 | 1 | $\times$ |
|  | H5-09 | Communication Fault Detection Time | 0.0 to 10.0 | 2.0 s | $\times$ |
|  | H5-10 | Unit Selection for MEMOBUS/ Modbus Register 0025H | 0,1 | 0 | $\times$ |
|  | H5-11 | Communications ENTER Function Selection | 0,1 | 0 | $\times$ |
|  | H5-12 | Run Command Method Selection | 0,1 | 0 | $\times$ |
|  | H5-17 | Operation Selection when Unable to Write into EEPROM | 0,1 | 0 | $\times$ |
|  | H5-18 | Filter Time Constant for Motor Speed Monitoring | 0 to 100 | 0 ms | $\times$ |
|  | H6-01 | Pulse Train Input Terminal RP Function Selection | 0 to 3 | 0 | $\times$ |
|  | H6-02 | Pulse Train Input Scaling | 100 to 32000 | 1440 Hz | $\bigcirc$ |
|  | H6-03 | Pulse Train Input Gain | 0.0 to 1000.0 | 100.0\% | $\bigcirc$ |
|  | H6-04 | Pulse Train Input Bias | -100.0 to +100.0 | 0.0\% | O |
|  | H6-05 | Pulse Train Input Filter Time | 0.00 to 2.00 | 0.10 s | $\bigcirc$ |
|  | H6-06 | Pulse Train Monitor Selection | 000,031,101,102,105, 116,501,502,801 to 809 | 102 | $\bigcirc$ |
|  | H6-07 | Pulse Train Monitor Scaling | 0 to 32000 | 1440 Hz | $\bigcirc$ |
|  | H6-08 | Pulse Train Input Minimum Frequency | 0.1 to 1000.0 | 0.5 Hz | $\times$ |
|  | L1-01 | Motor Overload Protection Selection | 0 to 6 | *2 | $\times$ |
|  | L1-02 | Motor Overload Protection Time | 0.1 to 5.0 | 1.0 min | $\times$ |
|  | L1-03 | Motor Overheat Alarm Operation Selection (PTC input) | 0 to 3 | 3 | $\times$ |
|  | L1-04 | Motor Overheat Fault Operation Selection (PTC input) | 0 to 2 | 1 | $\times$ |
|  | L1-05 | Motor Temperature Input Filter Time (PTC input) | 0.00 to 10.00 | 0.20 s | $\times$ |
|  | L1-08 | oL1 Current Lvl | 0.0 or $10 \%$ to $150 \%$ of the drive rated current | 0.0 A | $\times$ |
|  | L1-09 | oL1 Current Lvl (for 2nd motor) | 0.0 or $10 \%$ to $150 \%$ of the drive rated current | 0.0 A | $\times$ |
|  | L1-13 | Continuous Electrothermal Operation Selection | 0,1 | 1 | $\times$ |
|  | L2-01 | Momentary Power Loss Operation Selection | 0 to 2 | 0 | $\times$ |
|  | L2-02 | Momentary Power Loss Ride-Thru Time | 0.0 to 2.5 | 0.5 s | $\times$ |
|  | L2-03 | Momentary Power Loss Minimum Baseblock Time | 0.1 to 5.0 | *1 | $\times$ |
|  | L2-04 | Momentary Power Loss Voltage Recovery Ramp Time | 0.0 to 5.0 | *1 | $\times$ |
|  | L2-07 | KEB Acceleration Time | 0.00 to 6000.0*1 | 0.00 s | $\times$ |
|  | L2-13 | Power Supply Frequency Fault Detection Gain | 0.1 to 2.0 | 1.0 | $\times$ |
|  | L2-21 | Low Input Voltage Detection Level | 100 to 200 | *1 | $\times$ |
|  | L2-27 | Power Supply Frequency Fault Detection Width | 3.0 to 20.0 | 6.0 Hz | $\times$ |
|  | L3-01 | Stall Prevention Selection during Acceleration | 0 to 3 | 1 | $\times$ |
|  | L3-02 | Stall Prevention Level during Acceleration | 0 to 150*1 | *1 | $\times$ |
|  | L3-03 | Stall Prevention Limit during Acceleration/Deceleration | 0 to 100 | 50\% | $\times$ |
|  | L3-04 | tall Prevention Selection during Deceleration | 0,1,4,6*2 | 1 | $\times$ |

Note: Footnotes are listed on page 19.

## Parameter List (continued)

| Function | No. | Name | Range | Default | Changes during Run |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | L3-05 | Stall Prevention Selection during Run | 0 to 2 | 1 | $\times$ |
|  | L3-06 | Stall Prevention Level during Run | 30 to 150*1 | *1 | $\times$ |
|  | L3-14 | Stall Prevention Level during Deceleration | 100 to 200*1 | *1 | $\times$ |
|  | L3-22 | Deceleration Time at Stall Prevention during Acceleration | 0.0 to 6000.0 | 0.0 s | $\times$ |
|  | L3-23 | Automatic Reduction Selection for Stall Prevention during Run | 0,1 | 0 | $\times$ |
|  | L3-27 | Stall Prevention Detection Time | 0 to 5000 | 50 ms | $\times$ |
|  | L3-36 | Vibration Suppression Gain during Acceleration (with Current Limit) | 0.0 to 100.0 | *2 | $\times$ |
|  | L3-39 | Current-limited Integral Time Constant during Acceleration | 1.0 to 1000.0 | $\begin{gathered} 100.0 \\ \mathrm{~ms} \end{gathered}$ | $\times$ |
|  | L3-40 | Current-limited Maximum S-curve Selection during Acceleration | 0,1 | 0 | $\times$ |
|  | L3-41 | Vibration Suppression Gain during Deceleration (with Current Limit) | 0.0 to 100.0 | *2 | $\times$ |
|  | L3-44 | Current-limited Integral Time Constant during Deceleration | 1.0 to 1000.0 | $\begin{gathered} 100.0 \\ \mathrm{~ms} \\ \hline \end{gathered}$ | $\times$ |
|  | L3-45 | Current-limited Maximum S-curve Selection during Deceleration | 0,1 | 0 | $\times$ |
|  | L4-01 | Speed Agreement Detection Level | 0.0 to 400.0*2 | *2 | $\times$ |
|  | L4-02 | Speed Agreement Detection Width | 0.0 to 20.0 | *2 | $\times$ |
|  | L4-03 | Speed Agreement Detection Level( $+/$-) | -400.0 to $+400.0 * 2$ | *2 | $\times$ |
|  | L4-04 | Speed Agreement Detection Width( $+/$ ) | 0.0 to 20.0 | *2 | $\times$ |
|  | L4-05 | Frequency Reference Loss Detection Selection | 0,1 | 0 | $\times$ |
|  | L4-06 | Frequency Reference at Reference Loss | 0.0 to 100.0 | 80\% | $\times$ |
|  | L4-07 | Speed Agree Detection Selection | 0,1 | 0 | $\times$ |
|  | L5-01 | Number of Auto Restart Attempts | 0 to 10 | 0 | $\times$ |
|  | L5-02 | Auto Restart Fault Output Operation Selection | 0,1 | 0 | $\times$ |
|  | L5-04 | Fault Reset Interval Time | 0.5 to 600.0 | 10.0 s | $\times$ |
|  | L5-05 | Fault Reset Operation Selection | 0,1 | 0 | $\times$ |
|  | L6-01 | Torque Detection Selection 1 | 0 to 8 | 0 | $\times$ |
|  | L6-02 | Torque Detection Level 1 | 0 to 300 | 150\% | $\times$ |
|  | L6-03 | Torque Detection Time 1 | 0.0 to 10.0 | 0.1 s | $\times$ |
|  | L6-04 | Torque Detection Selection 2 | 0 to 8 | 0 | $\times$ |
|  | L6-05 | Torque Detection Level 2 | 0 to 300 | 150\% | $\times$ |
|  | L6-06 | Torque Detection Time 2 | 0.0 to 10.0 | 0.1 s | $\times$ |
|  | L6-08 | Mechanical Weakening Detection Operation | 0 to 8 | 0 | $\times$ |
|  | L6-09 | Mechanical Weakening Detection Speed Level | $\begin{gathered} -110.0 \text { to } \\ +110.0 \\ \hline \end{gathered}$ | 110.0\% | $\times$ |
|  | L6-10 | Mechanical Weakening Detection Time | 0.0 to 10.0 | 0.1 s | $\times$ |
|  | L6-11 | Mechanical Weakening Detection Start Time | 0 to 65535 | Oh | $\times$ |
|  | L7-01 | Forward Torque Limit | 0 to 300 | 200\% | $\times$ |
|  | L7-02 | Reverse Torque Limit | 0 to 300 | 200\% | $\times$ |
|  | L7-03 | Forward Regenerative Torque Limit | 0 to 300 | 200\% | $\times$ |
|  | L7-04 | Reverse Regenerative Torque Limit | 0 to 300 | 200\% | $\times$ |
|  | L7-06 | Torque Limit Integral Time Constant | 5 to 10000 | 200 ms | $\times$ |
|  | L7-07 | Torque Limit Control Method Selection during Accel/Decel | 0,1 | 0 | $\times$ |
|  | L7-16 | Torque Limit Process at Start | 0,1 | 1 | $\times$ |
|  | L8-02 | Overheat Alarm Level | 50 to 150 | *1 | $\times$ |
|  | L8-03 | Overheat Pre-Alarm Operation Selection | 0 to 4 | 3 | $\times$ |
|  | L8-07 | Output Phase Loss Protection Selection | 0 to 2 | 0 | $\times$ |
|  | L8-09 | Output Ground Fault Detection Selection | 0,1 | 1 | $\times$ |
|  | L8-10 | Heatsink Cooling Fan Operation Selection | 0,1 | 0 | $\times$ |
|  | L8-11 | Heatsink Cooling Fan Off Delay Time | 0 to 300 | 60 s | $\times$ |
|  | L8-12 | Ambient Temperature Setting | -10 to +50 | $40^{\circ} \mathrm{C}$ | $\times$ |
|  | L8-15 | oL2 Characteristics Selection at Low Speeds | 0,1 | 1 | $\times$ |
|  | L8-18 | Software Current Limit Selection | 0,1 | 0 | $\times$ |
|  | L8-19 | Frequency Reduction Rate during Overheat Pre-Alarm | 0.1 to 0.9 | 0.8 | $\times$ |
|  | L8-27 | Overcurrent Detection Gain | 0.0 to 400.0 | 300.0\% | $\times$ |
|  | L8-29 | Current Unbalance Detection (LF2) | 0,2 | 2 | $\times$ |
|  | L8-32 | Cooling Fan Failure Selection | 0 to 2 | 1 | $\times$ |
|  | L8-35 | Installation Method Selection | 0 to 3 | *3 | $\times$ |
|  | L8-38 | Carrier Frequency Reduction Selection | 0 to 2 | *1 | $\times$ |
|  | L8-40 | Carrier Frequency Reduction Off-Delay Time | 0.00 to 2.00 | *2 | $\times$ |
|  | L8-41 | High Current Alarm Selection | 0,1 | 0 | $\times$ |
|  | L8-93 | LSo Detection Time at Low Speed | 0.0 to 10.0 | 1.0 s | $\times$ |


| Function | No. | Name | Range | Default | $\begin{gathered} \text { Changes } \\ \text { during } \\ \text { Run } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | L8-94 | LSo Detection Level at Low Speed | 0 to 10 | 3\% | $\times$ |
|  | L8-95 | Average LSo Frequency at Low Speed | 1 to 50 | 10 | $\times$ |
|  | L9-03 | Carrier Frequency Reduction Level Selection | 0,1 | 0 | $\times$ |
|  | n1-01 | Hunting Prevention Selection | 0,1 | 1 | $\times$ |
|  | n1-02 | Hunting Prevention Gain Setting | 0.00 to 2.50 | 1.00 | $\times$ |
|  | n1-03 | Hunting Prevention Time Constant | 0 to 500 | *3 | $\times$ |
|  | n1-05 | Hunting Prevention Gain while in Reverse | 0.00 to 2.50 | 0.00 | $\times$ |
|  | n2-01 | Speed Feedback Detection Control(AFR) Gain | 0.00 to 10.00 | 1.00 | $\times$ |
|  | n2-02 | Speed Feedback Detection Control(AFR) Time Constant 1 | 0 to 2000 | 50 ms | $\times$ |
|  | n2-03 | Overexcitation Deceleration Gain | 0 to 2000 | $\begin{aligned} & 750 \\ & \mathrm{~ms} \end{aligned}$ | $\times$ |
|  | n3-13 | Overexcitation Deceleration Gain | 1.00 to 2.00 | 1.10 | $\times$ |
|  | n5-01 | Feed Forward Control Selection | 0,1 | 0 | $\times$ |
|  | n5-02 | Motor Acceleration Time | 0.001 to 10.000 | *1 | $\times$ |
|  | n5-03 | Feed Forward Control Gain | 0.00 to 100.00 | 1.00 | $\times$ |
| $\begin{array}{\|l\|} \hline \text { ㅇㅡㅡ 을 } \\ \text { 容 } \\ \hline \end{array}$ | n6-01 | Online Tuning Selection | 0 to 2 | 0 | $\times$ |
|  | n6-05 | Online Tuning Gain | 0.1 to 50.0 | 1.0 | $\times$ |
|  | n8-01 | Initial Rotor Position Estimation Current | 0 to 100 | 50\% | $\times$ |
|  | n8-02 | Pole Attraction Current | 0 to 150 | 80\% | $\times$ |
|  | n8-11 | Induction Voltage Estimation Gain 2 | 0.0 to 1000.0 | $\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { n8-72 } \\ \hline \end{array}$ | $\times$ |
|  | n8-14 | Polarity Compensation Gain 3 | 0.000 to 10.000 | 1.000 | $\times$ |
|  | n8-15 | Polarity Compensation Gain 4 | 0.000 to 10.000 | 0.500 | $\times$ |
|  | n8-21 | Motor Ke Gain | 0.80 to 1.00 | 0.90 | $\times$ |
|  | n8-35 | Initial Rotor Position Detection Selection | 0 to 2 | 1 | $\times$ |
|  | n8-36 | High Frequency Injection Level | 200 to 1000 | 500 Hz | $\times$ |
|  | n8-37 | High Frequency Injection Amplitude | 0.0 to 50.0 | 20\% | $\times$ |
|  | n8-39 | Low Pass Filter Cutoff Frequency for High Frequency Injection | 0 to 1000 | 50 Hz | $\times$ |
|  | n8-45 | Speed Feedback Detection Control Gain (for PM Motors) | 0.00 to 10.00 | 0.80 | $\times$ |
|  | n8-47 | Pull-In Current Compensation Time Constant (for PM Motors) | 0.0 to 100.0 | 5.0 s | $\times$ |
|  | n8-48 | Pull-In Current (for PM Motors) | 20 to 200 | 30\% | $\times$ |
|  | n8-49 | d-Axis Current for High Efficiency Control (for PM Motors) | -200.0 to 0.0 | $\begin{gathered} \hline \text { dep. On } \\ \text { E5-01 } \\ \hline \end{gathered}$ | $\times$ |
|  | n8-51 | Acceleration/Deceleration Pull-In Current (for PM Motors) | 0 to 200 | 50\% | $\times$ |
|  | n8-54 | Voltage Error Compensation Time Constant | 0.00 to 10.00 | 1.00 s | $\times$ |
|  | n8-55 | Load Inertia | 0 to 3 | 0 | $\times$ |
|  | n8-57 | High Frequency Injection | 0,1 | 0 | $\times$ |
|  | n8-62 | Output Voltage Limit (for PM Motors) | 0.0 to 230.0*4 | $200.0 \mathrm{~V}^{* 4}$ | $\times$ |
|  | n8-69 | Speed Calculation Gain | 0.00 to 20.00 | 1.00 | $\times$ |
|  | n8-72 | Speed Estimation Method Selection | 0,1 | 1 | $\times$ |
|  | n8-84 | Polarity Judge Current | 0 to 150 | 100\% | $\times$ |
|  | 01-01 | Drive Mode Unit Monitor Selection | 104 to 914 | 106 | $\bigcirc$ |
|  | 01-02 | User Monitor Selection after Power Up | 1 to 5 | 1 | $\bigcirc$ |
|  | 01-03 | Digital Operator Display Selection | 0 to 3 | *2 | $\times$ |
|  | 01-04 | V/f Pattern Display Unit | 0,1 | *2 | $\times$ |
|  | 01-05 | LCD Contrast Control | 0 to 5 | 3 | $\bigcirc$ |
|  | -1-10 | User-Set Display Units Maximum Value | 1 to 60000 | $\begin{array}{c\|} \hline \text { dep. On } \\ 01-03 \end{array}$ | $\times$ |
|  | 01-11 | User-Set Display Units Decimal Display | 0 to 3 | $\begin{array}{\|c\|} \hline \text { dep. On } \\ 01-03 \\ \hline \end{array}$ | $\times$ |
|  | o2-01 | LO/RE (LOCAL/REMOTE) Key Function Selection | 0,1 | 1 | $\times$ |
|  | 02-02 | STOP Key Function Selection | 0,1 | 1 | $\times$ |
|  | 02-03 | User Parameter Default Value | 0 to 2 | 0 | $\times$ |
|  | 02-04 | Drive Model Selection | $-$ | $\begin{gathered} \text { dep. on } \\ \text { drive } \\ \text { capacity } \end{gathered}$ | $\times$ |
|  | o2-05 | Frequency Reference Setting Method Selection | 0,1 | 0 | $\times$ |
|  | 02-06 | Operation Selection when Digital Operator is Disconnected | 0,1 | 0 | $\times$ |
|  | 02-07 | Motor Direction at Power Up when Using Operator | 0,1 | 0 | $\times$ |
|  | 02-09 | Reserved | - | - | $\times$ |


| Function | No. | Name | Range | Default | Changes during Run |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 03-01 | Copy Function Selection | 0 to 3 | 0 | $\times$ |
|  | 03-02 | Copy Allowed Selection | 0,1 | 0 | $\times$ |
|  | 04-01 | Cumulative Operation Time Setting | 0 to 9999 | 0 | $\times$ |
|  | 04-02 | Cumulative Operation Time Selection | 0,1 | 0 | $\times$ |
|  | 04-03 | Cooling Fan Operation Time Setting | 0 to 9999 | 0 | $\times$ |
|  | 04-05 | Capacitor Maintenance Setting | 0 to 150 | 0\% | $\times$ |
|  | 04-07 | DC Bus Pre-Charge Relay Maintenance Setting | 0 to 150 | 0\% | $\times$ |
|  | 04-09 | IGBT Maintenance Setting | 0 to 150 | 0\% | $\times$ |
|  | 04-11 | U2, U3 Initialization | 0,1 | 0 | $\times$ |
|  | 04-12 | kWh Monitor Initialization | 0,1 | 0 | $\times$ |
|  | 04-13 | Number of Run Commands Counter Initialization | 0,1 | 0 | $\times$ |
|  | 04-19 | Power Unit Price | $\begin{aligned} & 0.00 \text { to } \\ & 650.00 \\ & \hline \end{aligned}$ | 000.00 | $\times$ |
|  | $\begin{gathered} q 1-01 \\ \text { to } \\ \text { q6-07 } \end{gathered}$ | DriveWorksEZ Parameters | - | - | $\times$ |
|  | $\begin{gathered} \text { r1-01 } \\ \text { to } \\ \text { r1-40 } \end{gathered}$ | DriveWorksEZ Connection <br> Parameters 1 to 20 (upper/lower) | - | - | $\times$ |
|  | T1-00 | Motor 1/Motor 2 Selection | 1,2 | 1 | $\times$ |
|  | T1-01 | Auto-Tuning Mode Selection | 0,2,3,4,5,8,9 | *2 | $\times$ |
|  | T1-02 | Motor Rated Power | $\begin{aligned} & \hline 0.00 \text { to } \\ & 650.00 \\ & \hline \end{aligned}$ | *1 | $\times$ |
|  | T1-03 | Motor Rated Voltage | $\begin{gathered} 0.0 \text { to } \\ 255.0 * 4 \\ \hline \end{gathered}$ | 200.0V*4 | $\times$ |
|  | T1-04 | Motor Rated Current | $10 \%$ to $150 \%$ of the drive rated current | *3 | $\times$ |
|  | T1-05 | Motor Base Frequency | 0.0 to 400.0 | 60.0 Hz | $\times$ |
|  | T1-06 | Number of Motor Poles | 2 to 48 | 4 | $\times$ |
|  | T1-07 | Motor Base Speed | 0 to 24000 | $1750 \mathrm{~min}^{-1}$ | $\times$ |
|  | T1-08 | PG Number of Pulses Per Revolution | 0 to 60000 | 600 ppr | $\times$ |
|  | T1-09 | Motor No-Load Current (Stationary Auto-Tuning) | 0 to T1-04 | - | $\times$ |
|  | T1-10 | Motor Rated Slip (Stationary Auto-Tuning) | 0.00 to 20.00 | - | $\times$ |
|  | T1-11 | Motor Iron Loss | 0 to 65535 | 14 W* | $\times$ |
|  | T2-01 | PM Motor Auto-Tuning Mode Selection | $\begin{gathered} \hline 0,1,2,3,8,9 \\ 11,13,14 \\ \hline \end{gathered}$ | 0 | $\times$ |
|  | T2-02 | PM Motor Code Selection | 0000 to FFFF | *1 | $\times$ |
|  | T2-03 | PM Motor Type | 0,1 | 1 | $\times$ |
|  | T2-04 | PM Motor Rated Power | $\begin{aligned} & \hline 0.00 \text { to } \\ & 650.00 \\ & \hline \end{aligned}$ | *1 | $\times$ |
|  | T2-05 | PM Motor Rated Voltage | $\begin{gathered} 0.0 \mathrm{to} \\ 255.0 * 4 \\ \hline \end{gathered}$ | 200.0V*4 | $\times$ |
|  | T2-06 | PM Motor Rated Current | $10 \%$ to $150 \%$ of the drive rated current | *3 | $\times$ |
|  | T2-07 | PM Motor Base Frequency | 0.0 to 400.0 | 87.5 Hz | $\times$ |
|  | T2-08 | Number of PM Motor Poles | 2 to 48 | 6 | $\times$ |
|  | T2-09 | PM Motor Base Speed | 0 to 24000 | $1750 \mathrm{~min}^{-1}$ | $\times$ |
|  | T2-10 | PM Motor Stator Resistance | $\begin{gathered} 0.000 \text { to } \\ 65.000 \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { T2-02 } \\ \hline \end{array}$ | $\times$ |
|  | T2-11 | PM Motor d-Axis Inductance | $\begin{aligned} & \hline 0.00 \text { to } \\ & 600.00 \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { T2-02 } \\ \hline \end{array}$ | $\times$ |
|  | T2-12 | PM Motor q-Axis Inductance | $\begin{aligned} & 0.00 \text { to } \\ & 600.00 \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { dep. On } \\ \text { T2-02 } \\ \hline \end{array}$ | $\times$ |
|  | T2-13 | Induced Voltage Constant Unit Selection | 0,1 | 1 | $\times$ |
|  | T2-14 | PM Motor Induced Voltage Constant (Ke) | 0.0 to 2000.0 | $\begin{array}{c\|} \hline \text { dep. On } \\ \text { T2-02 } \\ \hline \end{array}$ | $\times$ |
|  | T2-15 | Pull-In Current Level for PM Motor Tuning | 0 to 120 | 30\% | $\times$ |
|  | T2-16 | PG Number of Pulses Per Revolution for PM Motor Tuning | 0 to 15000 | 1024 ppr | $\times$ |
|  | T2-17 | Encoder Z-Pulse Offset ( $\Delta \theta$ ) | $\begin{aligned} & -180.0 \text { to } \\ & +180.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0 \\ & \text { deg } \\ & \hline \end{aligned}$ | $\times$ |


| Function | No. | Name | Range | Default | $\begin{aligned} & \text { Changes } \\ & \text { during } \\ & \text { Run } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | T3-01 | Inertia Tuning Frequency Reference | 0.1 to 20.0 | 3.0 Hz | $\times$ |
|  | T3-02 | Inertia Tuning Reference Amplitude | 0.1 to 10.0 | 0.5 rad | $\times$ |
|  | T3-03 | Motor Inertia | $\begin{aligned} & \hline 0.0001 \text { to } \\ & 600.00 \end{aligned}$ | *1 | $\times$ |
|  | T3-04 | ASR Response Frequency | 0.1 to 50.0 | 10.0 Hz | $\times$ |

*1: Value depends on other related parameter settings. Refer to U1000 Technical Manual for details.
*2 : Default setting depends on the control mode (A1-02). Refer to U1000 Technical Manual for details.
*3 : Default setting depends on drive capacity (o2-04). Refer to U1000 Technical Manual for details.
*4 : Value shown here is for 200 V class drives. Double the value when using a 400 V class drive.
*5 : Parameter is not reset to the default value when the drive is initialized (A1-03).
*6: Value in parenthesis is the default setting for a 3 -wire sequence (A1-03=3330).

## U <br> Basic Instructions

## Outstanding operability and quick setup

## Operator Names and Functions

Function Key (F1, F2) The functions assigned to F1 and F2 vary depending on the menu that is currently displayed. The name of each function appears in the lower half of the display window.

Up Arrow Key
Scrolls up to display the next item, selects parameter numbers and increments setting values.
$\qquad$

## ESC Key

- Returns to the previous display.
- Moves the cursor one space to the left.
- Pressing and holding this button will return to the Frequency Reference display.


## RESET Key

- Moves the cursor to the right.
- Resets the drive to clear a fault situation.

RUN Light
Lit while the drive is operating the motor. See below for details.

RUN Key $\qquad$
Starts the drive in the LOCAL mode.

Display Guide

| LED | ON | Flashing | Flashing Quickly | OFF |
| :---: | :---: | :---: | :---: | :---: |
| ALM | A fault has occurred. | - Alarm situation detected. <br> - Operator error (OPE) <br> - A fault or an error occured during Auto-Tuning. | - | Normal operation |
| P星 | Run command assigned to the operator (LOCAL) | - | - | Control assigned to remote location |
| -1/m | During run | - During deceleration <br> - Run command is present but the frequency reference is zero. | - During deceleration when a Fast Stop command was entered. <br> - The drive output is shut off by the Safe Disable function. | Drive is stopped. |

How the RUN light works:


## Operation Example

Menu Structure for Digital Operator
Turn the power on (RUN LED lit)

| - MODE - DRV Rdy |
| :---: |
| FREF(AI) |
| U1-01 $=0.00 \mathrm{~Hz}$ |
| $-01-02=0.00 \mathrm{~Hz}$ RSEQ |
| U1-03 $=0.00 \mathrm{~A}$ RREF |
| UOG FWD |



Programming Mode*2 Drive Mode*1

200 V Class
ND: Normal Duty, HD: Heavy Duty

| Model CIMR-U:..2A:_ |  |  | 0028 | 0042 | 0054 | 0068 | 0081 | 0104 | 0130 | 0154 | 0192 | 0248 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rated Input | ND | 25 | 38 | 49 | 62 | 74 | 95 | 118 | 140 | 175 | 226 |
|  | Current*1 A | HD | 20 | 25 | 38 | 49 | 62 | 74 | 95 | 118 | 140 | 175 |
|  | Rated Input | ND | 12 | 17 | 22 | 28 | 34 | 43 | 54 | 64 | 80 | 103 |
|  | Capacity*2 kVA | HD | 9 | 12 | 17 | 22 | 28 | 34 | 43 | 54 | 64 | 80 |
|  | Rated Output | ND | 28 | 42 | 54 | 68 | 81 | 104 | 130 | 154 | 192 | 248 |
|  | Current*3*4 A | HD | 22 | 28 | 42 | 54 | 68 | 81 | 104 | 130 | 154 | 192 |
|  | Overload Tolerance |  | HD Rating: $150 \%$ of rated output current for 60 s, ND Rating: $120 \%$ of rated output current for 60 s (Derating may be required for repetitive loads) |  |  |  |  |  |  |  |  |  |
|  | Carrier Frequency |  | 4 kHz (User adjustable up to 10 kHz . Derating may be required.) |  |  |  |  |  |  |  |  |  |
|  | Max. Output Voltage |  | Depends on input voltage |  |  |  |  |  |  |  |  |  |
|  | Max. Output Freq | uency | 400 Hz |  |  |  |  |  |  |  |  |  |
|  | Rated Voltage/Rated Fre | quency | Three-phase AC power supply: 200 to 240 Vac $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |
|  | Allowable Voltage Fluc | tuation | -15\% to +10\% |  |  |  |  |  |  |  |  |  |
|  | Allowable Frequency Fluc | ctuation | $\pm 3 \%$ (Frequency fluctuation rate: $1 \mathrm{~Hz} / 100 \mathrm{~ms}$ or less) |  |  |  |  |  |  |  |  |  |
|  | Allowable Power Vol Imbalance between |  | less than 2\% |  |  |  |  |  |  |  |  |  |
| Harmonic Current Distortion Rate*5 |  |  | 5\% or less (IEEE 519) |  |  |  |  |  |  |  |  |  |
| Input Power Factor |  |  | 0.98 or more (for rated load) |  |  |  |  |  |  |  |  |  |

*1 : Assumes operation at the rated output current. This value may fluctuate based on the power supply side impedance, as well as the input current, power supply transformer, and wiring conditions.
*2 : The rated input capacity is calculated by multiplying the power line voltage ( 240 V ) by 1.1.
*3: The rated output current of the drive should be equal to or greater than the motor rated current.

* 4 : This value assumes a carrier frequency of 4 kHz . Increasing the carrier frequency requires a reduction in current.
$* 5$ : When the harmonic current distortion rate is $5 \%$ or less, the maximum output voltage is calculated by multiplying input power voltage by 0.87 . You must also change the parameter from the default setting.

400 V Class

| Model CIMR-U: . 4 A: ...... |  |  | 0011 | 0014 | 0021 | 0027 | 0034 | 0040 | 0052 | 0065 | 0077 | 0096 | 0124 | 0156 | 0180 | 0216 | 0240 | 0302 | 0361 | 0414 | 0477 | 0590 | 0720 | 0900 | 0930 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rated Intput | ND | 10 | 13 | 19 | 25 | 31 | 36 | 47 | 59 | 70 | 87 | 113 | 142 | 164 | 197 | 218 | 275 | 329 | 377 | Available soon. |  |  |  |  |
|  | Current*1 A | HD | 8.7 | 10 | 13 | 19 | 25 | 31 | 36 | 47 | 59 | 70 | 87 | 113 | 142 | 164 | 197 | 218 | 275 | 329 |  |  |  |  |  |
|  | Rated Input Capacity*2 kVA | ND | 9 | 12 | 17 | 22 | 28 | 33 | 43 | 54 | 64 | 80 | 103 | 130 | 150 | 180 | 200 | 251 | 300 | 344 |  |  |  |  |  |
|  |  | HD | 8 | 9 | 12 | 17 | 22 | 28 | 33 | 43 | 54 | 64 | 80 | 103 | 130 | 150 | 180 | 200 | 251 | 300 |  |  |  |  |  |
|  | Rated Output <br> Current*3*4 <br> A | ND | 11 | 14 | 21 | 27 | 34 | 40 | 52 | 65 | 77 | 96 | 124 | 156 | 180 | 216 | 240 | 302 | 361 | 414 |  |  |  |  |  |
|  |  | HD | 9.6 | 11 | 14 | 21 | 27 | 34 | 40 | 52 | 65 | 77 | 96 | 124 | 156 | 180 | 216 | 240 | 302 | 361 |  |  |  |  |  |
|  | Overload Tolerance |  | HD Rating: $150 \%$ of rated output current for 60 s, ND Rating: $120 \%$ of rated output current for 60 s (Derating may be required for repetitive loads) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Carrier Frequency |  | 4 kHz (User adjustable up to 10 kHz . Derating may be required.) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Max. Output Voltage |  | Depends on input voltage |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Max. Output Frequ | ency | 400 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\left.\begin{array}{\|l\|l\|} \hline & \frac{0}{0} \\ 3_{0} \\ 0 \end{array} \right\rvert\,$ | Rated Voltage/Rated Frequer | uency | Three-phase AC power supply: 380 to $480 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Allowable Voltage Fluct | uation | -15\% to +10\% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Allowable Frequency Fluc | ctuation | $\pm 3 \%$ (Frequency fluctuation rate: $1 \mathrm{~Hz} / 100 \mathrm{~ms}$ or less) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Allowable Power Volta Imbalance between P |  | less than 2\% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Harmonic Current Distortion Rate*5 |  |  | 5\% or less (IEEE 519) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Input Power Factor |  |  | 0.98 or more (for rated load) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

[^0]Common Specifications

| Item |  | Specifications |
| :---: | :---: | :---: |
|  | Control Method | V/f Control, V/f Control with PG, Open Loop Vector Control, Closed Loop Vector Control, Open Loop Vector Control for PM, Advanced Open Loop Vector Control for PM, Closed Loop Vector Control for PM |
|  | Frequency Control Range | 0.01 to 400 Hz |
|  | Frequency Accuracy (Temperature Fluctuation) | Digital reference: within $\pm 0.01 \%$ of the max. output frequency ( -10 to $+40^{\circ} \mathrm{C}$ ) Analog reference: within $\pm 0.1 \%$ of the max. output frequency ( $25 \pm 10^{\circ} \mathrm{C}$ ) |
|  | Frequency Setting Resolution | Digital reference: 0.01 Hz , Analog reference: $0.03 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (11 bit) |
|  | Output Frequency Resolution | 0.001 Hz |
|  | Frequency Setting Resolution | Main frequency reference: -10 to $+10 \mathrm{Vdc}, 0$ to $10 \mathrm{Vdc}(20 \mathrm{k} \Omega)$, 4 to $20 \mathrm{~mA}(250 \Omega), 0$ to $20 \mathrm{~mA}(250 \Omega)$ Main speed reference: Pulse train input (max. 32 kHz ) |
|  | Starting Torque | V/f Control $150 \% / 3 \mathrm{~Hz} \quad$ V/f Control with PG $150 \% / 3 \mathrm{~Hz}$ Open Loop Vector Control 200\%/0.3 Hz*1 Closed Loop Vector Control 200\%/0 $\mathrm{min}^{-1 * 1}$ Open Loop Vector Control for PM 100\%/5\% Speed Advanced Open Loop Vector Control for PM 200\%/0 $\mathrm{min}^{-1 * 1}$ Closed Loop Vector Control for PM $200 \% / 0 \mathrm{~min}^{-1 * 1}$ |
|  | Speed Control Range | V/f Control 1: 40 V/f Control with PG 1: 40 Open Loop Vector Control 1: 200 Closed Loop Vector Control 1:1500 Open Loop Vector Control for PM 1: 20 Advanced Open Loop Vector Control for PM 1: 100 Closed Loop Vector Control for PM 1: 1500 |
|  | Speed Control Accuracy | $\pm 0.2 \%$ in Open Loop Vector Control ( $25 \pm 10^{\circ} \mathrm{C}$ ), $\pm 0.02 \%$ in Closed Loop Vector Control ( $\left.25 \pm 10^{\circ} \mathrm{C}\right)^{* 2}$ |
|  | Speed Response | 10 Hz in Open Loop Vector Control $\left(25 \pm 10^{\circ} \mathrm{C}\right), 250 \mathrm{~Hz}$ in Closed Loop Vector Control $\left(25 \pm 10^{\circ} \mathrm{C}\right)^{* 3}$ (excludes temperature fluctuation when performing Rotational Auto-Tuning) |
|  | Torque Limit | Parameters setting allow separate limits in four quadrants (available in OLV, CLV, AOLV/PM, CLV/PM) |
|  | Accel/Decel Time | 0.00 to 6000.0 s ( 4 selectable combinations of independent acceleration and deceleration settings) |
|  | Braking Torque | Same value as overload tolerance |
|  | V/f Characteristics | User-selected programs and V/f preset patterns possible |
|  | Main Control Functions | Torque Control, Droop Control, Speed/Torque Control switch, Feed Forward Control, Zero Servo Control, Momentary Power Loss Ride-Thru, Speed Search, Synchronous Transfer with Commercial Power Supply, Overtorque detection, torque limit, 17 Step Speed (max.), accel/decel time switch, S-curve accel/decel, 3-wire sequence, Auto-Tuning (rotational, stationary), Dwell, cooling fan on/off switch, slip compensation, torque compensation, Frequency Jump, Upper/lower limits for frequency reference, DC Injection Braking at start and stop, High Slip Braking, PID control (with Sleep function), Energy Saving Control, MEMOBUS comm. (RS-485/422, max. 115.2 kbps ), Fault Restart, Application Presets, DriveWorksEZ (customized functions), Removable Terminal Block with Parameter Backup, Online Tuning, Overexcitation Deceleration, Inertia (ASR) Tuning, High Frequency Injection, etc. |
|  | Power Supply Regeneration | Available |
|  | Motor Protection | Motor overheat protection based on output current |
|  | Momentary Overcurrent Protection | Stops over 200\% rated output current (Heavy Duty) |
|  | Overload Protection | Drive stops after 60 s at 150\% of rated output current (when set for Heavy Duty performance)*4 |
|  | Input Power Overvoltage Protection | 200 V class: Stops when input voltage exceeds approx. $315 \mathrm{~V}, 400 \mathrm{~V}$ class: Stops when input voltage exceeds approx. 630 V |
|  | Input Power Undervoltage Protection | 200 V class: Stops when input voltage falls below approx. $150 \mathrm{~V}, 400 \mathrm{~V}$ class: Stops when input voltage falls below approx. 300 V |
|  | Momentary Power Loss Ride-Thru | Immediately stop after 2 ms or longer power loss. ${ }^{* 5}$ Continuous operation during power up to 2 s (standard).*6 |
|  | Heatsink Overheat Protection | Thermistor |
|  | Stall Prevention | Stall prevention during acceleration/deceleration and constant speed operation |
|  | Ground Fault Protection | Protection by electronic circuit*7 |
|  | Charge LCD | Charge LED remains lit until DC bus has fallen below approx. 50 V |
|  | Area of Use | Indoors |
|  | Ambient Temperature | -10 to $+50^{\circ} \mathrm{C}$ (open-chassis), -10 to $+40^{\circ} \mathrm{C}$ (NEMA Type 1) |
|  | Humidity | $95 \%$ RH or less (no condensation) |
|  | Storage Temperature | -20 to $+60^{\circ} \mathrm{C}$ (short-term temperature during transportation) |
|  | Altitude | Up to 1000 meters*8 |
|  | Shock | $\begin{aligned} & 10 \mathrm{~Hz} \text { to } 20 \mathrm{~Hz}, 9.8 \mathrm{~m} / \mathrm{s}^{2} \\ & 20 \mathrm{~Hz} \text { to } 55 \mathrm{~Hz}, \mathrm{CIMR}-\mathrm{UA} \square \mathrm{~A} 0034 \text { to 2A0077, } 4 \mathrm{~A} 0011 \text { to } 4 \mathrm{~A} 0077: 5.9 \mathrm{~m} / \mathrm{s}^{2} \\ & 20 \mathrm{~Hz} \text { to } 55 \mathrm{~Hz}, \mathrm{CIMR}-U A \square \mathrm{~A} 0096 \text { to 2A0216, 4A0096 to 4A0414: } 2.0 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ |
| Standards Compliance |  | - UL508C • IEC/EN61800-3, IEC/EN61800-5-1 •Two Safe Disable inputs and 1EDM output according to ISO/EN13849-1 Cat. 3 Ple, IEC/EN61508 SIL3 |
|  | tection Design | IP00 open-chassis, IP20 NEMA Type 1 enclosure*9 |

*1: Current derating is required.
*2 : Speed control accuracy may vary slightly depending on installation conditions or motor used. Contact Yaskawa for consultation.
*3: When the Speed Response Selection (C5-29) is set to 1
*4: Overload protection may be triggered when operating with $150 \%$ of the rated output current if the output frequency is less than 6 Hz .
*5 : May be shorter due to load conditions and motor speed.
*6 : A separate Momentary Power Loss Ride-Thru Unit is required for the drives if the application needs to continue running during a momentary power loss up to 2 s.

* 7 : Protection may not be provided under the following conditions as the motor windings are grounded internally during run:
-Low resistance to ground from the motor cable or terminal block.
- Drive already has a short-circuit when the power is turned on.
*8: Up to 3000 m with output current and voltage derating. Refer to Technical Manual for details.
*9 : Removing the cover of changes the drive's NEMA Type 1 rating to IP20.


## Standard Connection Diagram

Standard Connection Diagram
CIMR-UA2A0028

shielded line twisted-pair shielded line (O) main circuit terminal O control circuit terminal


Terminal Functions
Main Circuit Terminals
Max. Applicable Motor Capacity indicates Heavy Duty

| Voltage | 200 V | 400 V |
| :---: | :---: | :---: |
| Model CIMR-UA: | 2A0028 to 2A0248 | 4A0011 to 4A0930 |
| R/L1, S/L2, T/L3 | Main circuit input power supply |  |
| U/T1, V/T2, W/T3 | Drive output |  |
| p1, n1 | Momentary power loss recovery unit input |  |
| ( | Ground terminal (100 $\Omega$ or less) | Ground terminal (10 $\Omega$ or less) |

Control Circuit Input Terminals (200 V/400 V Class)

| Terminal Type | Terminal | Signal Function | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | S1 | Multi-function input selection 1 | Closed: Forward run (default) Open: Stop (default) |

*1: Connect a flywheel diode as shown below when driving a reactive load such as a relay coil. Diode must be rated higher than the circuit voltage.

*2 : Refrain from assigning functions to terminals M1 and M2 that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A , resistive load).

Serial Communication Terminals ( $200 \mathrm{~V} / 400$ V Class)

| Classification | Terminal | Signal Function | Description | Signal Level |
| :---: | :---: | :---: | :---: | :---: |
| RS-485/RS-422 <br> Communication | R+ | Communications input (+) | MEMOBUS/Modbus communications: Use a RS-485 or RS-422 cable to connect the drive. | RS-422/RS-485 MEMOBUS/Modbus communications protocol 115.2 kbps (max.) |
|  | R- | Communications input (-) |  |  |
|  | S+ | Communications output (+) |  |  |
|  | S- | Communications output (-) |  |  |
|  | IG | Shield ground | 0 V |  |

## Dimensions

Open-Chassis [IP00】


Figure 1


Figure 3


Figure 2


Figure 4

|  | Figure | Dimensions (mm) |  |  |  |  |  |  |  |  |  |  |  | Weight(kg) |  | Cooling |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIMR-U: 2 A |  | W | H | D | W1 | W2 | H1 | H2 | H4 | D1 | t1 | t2 | d | CIMR-U: 2 A $\square$ CIMR-U: 2P | CIMR-U: 2ED CIMR-U: 2W |  |
| 0028 | 1 | 250 | 480 | 360 | 205 | - | 463 | 6.5 | 40 | 100 | 2.3 | 4 | 7 | 20 | 21 | Fancooled |
| 0042 |  | 264 | 650 | 420 | 218 | - | 629 | 11.5 | 40 | 115.5 | 2.3 | 4 | 10 | 32 | 33 |  |
| 0054 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0068 |  |  |  |  |  |  |  |  |  |  |  |  |  | 35 | 36 |  |
| 0104 | 2 | 264 | 816 | 450 | 218 | - | 795 | 11.5 | 40 | 124.5 | 2.3 | 2.3 | 10 | 60 | 63 |  |
| 0130 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0154 | 3 | 415 | 990 | 403 | 250 | - | 966 | 11 | 40 | 165 | 4.5 | 3.9 | 12 | 110 | 115 |  |
| 0192 |  |  |  |  | 360 | 180 | 1104 | 14.5 | 49 | 181 | 4.5 | 4.5 |  | 176 | 181 |  |

400 V Class


## ■ Enclosure Panel [NEMA Type 1]



Figure 1


Figure 3


Figure 2


Figure 4

200 V Class

|  | Figure | Dimensions (mm) |  |  |  |  |  |  |  |  |  |  |  |  |  | Weight(kg) |  | Cooling |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { INOae } \\ & \text { CIMR-U: 2A: } \end{aligned}$ |  | W | H | D | W1 | W2 | H0 | H1 | H2 | H3 | H4 | D1 | t1 | t2 | d | $\begin{array}{\|l::\|} \hline \text { CIMR-UA } \\ \text { CIMR-U: } \\ \hline 2 P \square \\ \hline \end{array}$ | CIMR-U 22 CIMR-U 22 W |  |
| 0028 | 1 | 250 | 524 | 360 | 205 | - | 480 | 463 | 6.5 | 42 | 40 | 100 | 2.3 | 4 | 7 | 21.5 | 22.5 | Fan cooled |
| 0042 |  | 264 | 705 | 420 | 218 | - | 650 | 629 | 11.5 | 54 | 40 | 115.5 | 2.3 | 4 | 10 | 34 | 35 |  |
| 0054 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0068 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 37 | 38 |  |
| 0081 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 37 | 38 |  |
| 0104 | 2 | 264 | 885 | 450 | 218 | - | 816 | 795 | 11.5 | 68 | 40 | 124.5 | 2.3 | 2.3 | 10 | 62 | 65 |  |
| 0130 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0154 | 3 | 415 | 1107 | 403 | 250 | - | 990 | 966 | 11 | 85 | 8 | 165 | 4.5 | 3.9 | 12 | 113 | 118 |  |
| 0192 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0248 | 4 | 490 | 1320 | 450 | 360 | 180 | 1132 | 1104 | 14.5 | 169 | 29 | 181 | 4.5 | 4.5 | 14 | 180 | 185 |  |

400 V Class


## Fully-Enclosed Design

The Open-Chassis type drive can be installed in a fully-enclosed panel.
An open-chassis model in a protective enclosure with the heatsink inside the panel allows for intake air temperature up to $50^{\circ} \mathrm{C}$. The heatsink can alternatively be mounted outside the enclosure panel, thus reducing the amount of heat inside the panel and allowing for a more compact set up. Current derating or other steps to ensure cooling are required at $50^{\circ} \mathrm{C}$.


200 V Class Normal Duty Ratings

| Model Number |  | 0028 | 0042 | 0054 | 0068 | 0081 | 0104 | 0130 | 0154 | 0192 | 0248 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated Output Current A |  | 28 | 42 | 54 | 68 | 81 | 104 | 130 | 154 | 192 | 248 |
| HeatLoss | Heatsink W | 659 | 854 | 1037 | 1295 | 1420 | 1696 | 2157 | 2441 | 3064 | 3785 |
|  | Internal W | 103 | 168 | 195 | 225 | 238 | 282 | 341 | 366 | 447 | 578 |
|  | Total Heat Loss W | 762 | 1022 | 1232 | 1520 | 1658 | 1978 | 2498 | 2807 | 3511 | 4363 |

400 V Class Normal Duty Ratings

| Mod CIMR-U: | el Number $4 \mathrm{~A}$ | 0011 | 0014 | 0021 | 0027 | 0034 | 0040 | 0052 | 0065 | 0077 | 0096 | 0124 | 0156 | 0180 | 0216 | 0240 | 0302 | 0361 | 0414 | 0477 | 0590 | 0720 | 0900 | 0930 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated Output Current A |  | 11 | 14 | 21 | 27 | 34 | 40 | 52 | 65 | 77 | 96 | 124 | 156 | 180 | 216 | 240 | 302 | 361 | 414 | Available soon. |  |  |  |  |
| Heat Loss | Heatsink W | 452 | 459 | 641 | 675 | 798 | 877 | 1109 | 1369 | 1479 | 1715 | 2256 | 2857 | 3316 | 3720 | 3897 | 5202 | 5434 | 6444 |  |  |  |  |  |
|  | Internal W | 80 | 79 | 105 | 106 | 124 | 174 | 209 | 240 | 251 | 290 | 362 | 421 | 482 | 587 | 600 | 857 | 863 | 1012 |  |  |  |  |  |
|  | Total Heat Loss W | 532 | 538 | 746 | 781 | 922 | 1051 | 1318 | 1609 | 1730 | 2005 | 2618 | 3278 | 3798 | 4307 | 4497 | 6059 | 6297 | 7456 |  |  |  |  |  |

200 V Class Heavy Duty Ratings

| Model Number |  | 0028 | 0042 | 0054 | 0068 | 0081 | 0104 | 0130 | 0154 | 0192 | 0248 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIMR-U | $2 A$ |  |  |  |  |  |  |  |  |  |  |
| Rated Output Current A |  | 22 | 28 | 42 | 54 | 68 | 81 | 104 | 130 | 154 | 192 |
| HeatLoss | Heatsink W | 543 | 586 | 808 | 1016 | 1181 | 1313 | 1673 | 2037 | 2400 | 2815 |
|  | Internal W | 91 | 138 | 168 | 190 | 208 | 234 | 280 | 318 | 366 | 460 |
|  | Total Heat Loss W | 634 | 724 | 976 | 1206 | 1389 | 1547 | 1953 | 2355 | 2766 | 3275 |

## 400 V Class Heavy Duty Ratings

| Model Number |  | 0011 | 0014 | 0021 | 0027 | 0034 | 0040 | 0052 | 0065 | 0077 | 0096 | 0124 | 0156 | 0180 | 0216 | 0240 | 0302 | 0361 | 0414 | 0477 | 0590 | 0720 | 0900 | 0930 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIMR-U | 4A |  |  |  |  |  |  | 0052 | 0065 | 0077 | 0096 | 0124 | 0156 | 0180 | 0216 | 0240 | 0302 |  | 0414 |  |  |  |  |  |
| Rated Output Current A |  | 9.6 | 11 | 14 | 21 | 27 | 34 | 40 | 52 | 65 | 77 | 96 | 124 | 156 | 180 | 216 | 240 | 302 | 361 | Available soon. |  |  |  |  |
| Heat Loss | Heatsink W | 415 | 372 | 438 | 549 | 658 | 693 | 855 | 1087 | 1238 | 1373 | 1693 | 2242 | 2833 | 3035 | 3498 | 3867 | 4384 | 5563 |  |  |  |  |  |  |  |  |  |
|  | Internal W | 76 | 70 | 80 | 93 | 107 | 150 | 178 | 204 | 220 | 247 | 290 | 343 | 421 | 503 | 551 | 689 | 735 | 902 |  |  |  |  |  |  |  |  |  |
|  | Total Heat Loss W | 491 | 442 | 518 | 642 | 765 | 843 | 1033 | 1291 | 1458 | 1620 | 1983 | 2585 | 3254 | 3538 | 4049 | 4556 | 5119 | 6465 |  |  |  |  |  |  |  |  |  |

Attachment for External Heatsink (Available soon)

O Panel Modification for External Heatsink (Available soon)

## Peripheral Devices and Options



| Name | Purpose | Model, Manufacturer | Page |
| :---: | :---: | :---: | :---: |
| Ground Fault Interrupter (GFI) | Always install a GFI on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of shortcircuit, and to protect the drive from ground faults that could result in electric shock or fire. <br> Note: When a GFI is installed for the upper power supply system, an MCCB can be used instead of a GFI. <br> Choose a GFI designed to minimize harmonics specifically for AC drives. Use one GFI per drive, each with a current rating of at least 30 mA . | NV series* ${ }^{*}$ by Mitsubishi Electric Corporation NS Series*1 by Schneider Electric | 32 |
| Circuit Breaker | Always install a circuit breaker on the power-supply side to protect the power supply system and to prevent an overload at the occurrence of a short-circuit. | NF series* ${ }^{*}$ by Mitsubishi Electric Corporation | 32 |
| Magnetic Contactor | Interrupts the power supply to the drive. In addition to protecting drive circuitry, a magnetic contactor also prevents damage to a braking resistor if used. | SC series*1 by Fuji Electric FA Components \& Systems Co., Ltd. | 33 |
| Surge Protector | Absorbs the voltage surge from switching of electromagnetic contactors and control relays. Install a surge protector to the magnetic contactors and control relays as well as magnetic valves and magnetic braking coil. | DCR2 series RFN series by Nippon Chemicon Corporation | 33 |
| Zero Phase Reactor | Reduces noise from the line that enters into the drive input power system. Should be installed as close as possible to the drive. Can be used on both the input and output sides. | $\begin{aligned} & \text { F6045GB } \\ & \text { F11080GB } \\ & \text { F200160PB } \\ & \text { by Hitachi Metals, Ltd. } \end{aligned}$ | 34 |
| Isolator | Isolates the drive I/O signal, and is effective in reducing inductive noise. | DGP2 series | 35 |
| USB Copy Unit (RJ-45/ USB compatible plug) | - Can copy parameter settings easily and quickly to be later transferred to another drive. <br> - Adapter for connecting the drive to the USB port of a PC. | JVOP-181 | 37 |
| PC cable | Connect the drive and PC when using DriveWizard Puls or DriveWorksEZ. The cable length must be 3 m or less. | Commercially available USB2.0 A/B cable. | 37 |
| LED Operator | For easier operation when using the optional LED operator. Allows for remote operation. Includes a Copy function for saving drive settings. | JVOP-182 | 37 |
| LCD Operator Extension Cable | Cable for connecting the LCD operator. | WV001: 1 m WV003: 3 m | 36 |
| Momentary Power Loss Recovery Unit | Ensures continuous drive operation for a power loss of up to 2 s . | P0010 Type (200 V class) P0020 Type (400 V class) | 35 |
| Frequency Meter, Current Meter | Allows the user to set and monitor the frequency, current, and voltage using an external device. | DCF-6A | 38 |
| Variable Resistor Board ( $20 \mathrm{k} \Omega$ ) |  | ETX3120 | 38 |
| Frequency Setting Potentiometer (2 $\mathrm{k} \Omega$ ) |  | RH000739 | 38 |
| Frequency Meter Adjusting Potentiometer ( $20 \mathrm{k} \Omega$ ) |  | RH000850 | 38 |
| Control Dial for Frequency Setting Potentiometer |  | CM-3S | 38 |
| Output Voltage Meter |  | SCF-12NH | 39 |
| Voltage Transformer |  | UPN-B | 39 |
| Attachment for External Heatsink | Required for heatsink installation. Current derating may be needed when using a heatsink. | - | *2 |
| Low Voltage Manual Load Switch | Prevents shock from the voltage created on the terminals board from a coasting synchronous motor. | AICUT, LB series*1 by Aichi Electric Works Co., Ltd | - |

*1 : Recommended by Yaskawa. Contact the manufacturer in question for availability and specifi cations of nonYaskawa products.
*2 : Available soon.

## Option Cards

RoHS compliant


* 1 : Each communication option card requires a separate confi guration fi le to link to the network.
* 2 : PG speed controller card is required for PG control.
* 3 : Available soon


## Peripheral Devices and Options (continued)

## Ground Fault Interrupter,Circuit Breaker

Base device selection on motor capacity.


Ground Fault Interrupter
IMitsubishi Electric Corporation】


Circuit Breaker
IMitsubishi Electric Corporation]

200 V Class

| Motor <br> Capacity <br> (kW) (kW) | Ground Fault Interrupter |  |  | Ground Fault Interrupter |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Model | Rated Current (A) | Interrupt Capacity (kA) Icu/lcs* | Model | Rated Current (A) | Interrupt Capacity (kA) Icu/lcs* |
| 5.5 | NV32-SW | 30 | 10/4 | NF32 | 30 | 5/2 |
| 7.5 | NV63-SW | 40 | 15/8 | NF63 | 40 | 7.5/4 |
| 11 | NV63-SW | 50 | 15/8 | NF63 | 50 | 7.5/4 |
| 15 | NV125-SW | 75 | 50/25 | NF125 | 75 | 30/15 |
| 18.5 | NV125-SW | 75 | 50/25 | NF125 | 75 | 30/15 |
| 22 | NV125-SW | 100 | 50/25 | NF125 | 100 | 30/15 |
| 30 | NV250-SW | 125 | 50/25 | NF250 | 125 | 35/18 |
| 37 | NV250-SW | 150 | 50/25 | NF250 | 150 | 30/18 |
| 45 | NV250-SW | 175 | 50/25 | NF250 | 175 | 30/18 |
| 55 | NV250-SW | 225 | 50/25 | NF250 | 225 | 35/18 |
| 75 | NV400-SW | 300 | 85/85 | NF400 | 300 | 50/25 |

* : Icu : Rated ultimate short-circuit breaking capacity Ics : Rated service short-circuit breaking capacity

400 V Class

| Motor | Ground Fault Interrupter |  |  | Ground Fault Interrupter |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity <br> (kW) | Model | Rated Current (A) | Interrupt Capacity (kA) Icu/lcs* | Model | Rated Current (A) | Interrupt Capacity (kA) Icu/lcs* |
| 2.2 | NV32-SW | 10 | 5/2 | NF32 | 10 | 2.5/1 |
| 3.7 | NV32-SW | 10 | 5/2 | NF32 | 10 | 2.5/1 |
| 5.5 | NV32-SW | 15 | 5/2 | NF32 | 15 | 2.5/1 |
| 7.5 | NV32-SW | 20 | 5/2 | NF32 | 20 | 2.5/1 |
| 11 | NV32-SW | 30 | 5/2 | NF32 | 30 | 2.5/1 |
| 15 | NV32-SW | 30 | 5/2 | NF32 | 30 | 2.5/1 |
| 18.5 | NV63-SW | 40 | 7.5/4 | NF63 | 40 | 2.5/1 |
| 22 | NV63-SW | 50 | 7.5/4 | NF63 | 50 | 2.5/1 |
| 30 | NV125-SW | 60 | 25/13 | NF125 | 60 | 10/5 |
| 37 | NV125-SW | 75 | 25/13 | NF125 | 75 | 10/5 |
| 45 | NV125-SW | 100 | 25/13 | NF125 | 100 | 10/5 |
| 55 | NV250-SW | 125 | 25/13 | NF250 | 125 | 18/9 |
| 75 | NV250-SW | 150 | 25/13 | NF250 | 150 | 18/9 |
| 90 | NV250-SW | 175 | 25/13 | NF250 | 175 | 18/9 |
| 110 | NV250-SW | 225 | 25/13 | NF250 | 225 | 18/9 |
| 132 | NV400-SW | 300 | 42/42 | NF400 | 300 | 25/13 |
| 160 | NV400-SW | 350 | 42/42 | NF400 | 350 | 25/13 |
| 185 | NV400-SW | 400 | 42/42 | NF400 | 400 | 25/13 |
| 220 | NV630-SW | 500 | 42/42 | NF630 | 500 | 36/18 |
| 260 | NV630-SW | 500 | 42/42 | NF630 | 500 | 36/18 |
| 300 | NV630-SW | 630 | 42/42 | NF630 | 630 | 36/18 |
| 375 | NV800-SEW | 800 | 42/42 | NF800 | 800 | 36/18 |
| 450 | NV1000-SB | 1000 | 85 | NF1000 | 1000 | 85/43 |
| 500 | NV1000-SB | 1000 | 85 | NF1000 | 1000 | 85/43 |

[^1]
## Magnetic Contactor

Base device selection on motor capacity.


Magnetic Contactor
IFuji Electric FA Components \& Systems Co., Ltd]

Wiring a Magnetic Contactor in Parallel


Note: When wiring contactors in parallel, make sure wiring lengths are the same to keep current fl ow even to the relay terminals.

## 400 V Class

| Motor Capacity <br> (kW) | Utilization Category AC-1*1 |  | Utilization Category AC-3*1 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Model | Rated Current (A) | Model | Rated Current (A) |
| 3.7 | SC-03 | 20 | SC-0 | 9 |
| 5.5 | SC-03 | 20 | SC-4-0 | 13 |
| 7.5 | SC-03 | 20 | SC-4-1 | 17 |
| 11 | SC-4-0 | 25 | SC-N1 | 25 |
| 15 | SC-4-1 | 32 | SC-N2 | 32 |
| 18.5 | SC-N1 | 50 | SC-N2S | 48 |
| 22 | SC-N1 | 50 | SC-N2S | 48 |
| 30 | SC-N2 | 60 | SC-N3 | 65 |
| 37 | SC-N2S | 80 | SC-N4 | 80 |
| 45 | SC-N3 | 100 | SC-N5A | 90 |
| 55 | SC-N3 | 100 | SC-N6 | 110 |
| 75 | SC-N4 | 135 | SC-N7 | 150 |
| 90 | SC-N7 | 200 | SC-N8 | 180 |
| 110 | SC-N7 | 200 | SC-N10 | 220 |
| 132 | SC-N8 | 260 | SC-N11 | 300 |
| 160 | SC-N8 | 260 | SC-N11 | 300 |
| 185 | SC-N11 | 350 | SC-N12 | 400 |
| 220 | SC-N12 | 450 | SC-N12 | 400 |
| 260 | SC-N14 | 660 | SC-N14 | 600 |
| 300 | SC-N14 | 660 | SC-N14 | 600 |
| 375 | SC-N16 | 800 | SC-N16 | 800 |
| 450 | SC-N16 | 800 | SC-N16 | 800 |
| 500 | SC-N12 $22^{* 2}$ | $450 * 3$ | SC-N14×2*2 | $600^{* 3}$ |

*1: Utilization categories for contactors according to IEC standards.
AC-1 : Typical application is non-inductive or slightly inductive loads, such as a heater. Nomally select AC-1.
AC-3 : Typical application is squirrel cage motors: starting, switches off running motors. Select AC-3 to open the circuit during motor operation, such as for emergency stops.
*2 : When two units are connected in parallel.
*3 : Rated current for a single unit.

## Surge Protector

Dimensions (mm)


Weight: 150 g Model: DCR2-50A22E Model: DCR2-10A25C Model: RFN3AL504KD
[Nippon Chemi-Con Corporation]
Product Line

| Peripheral Devices Surge Protector |  |  | Model | Specifications | Code No. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 200 to 230 V |  | Large-Capacity Coil (other than relay) | DCR2-50A22E | $220 \mathrm{Vac} 0.5 \mu \mathrm{~F}+200 \Omega$ | C002417 |
| 200 to 240 V | Control Relay | MY2, MY3 [Omron Corporation】 MM2, MM4 [Omron Corporation】 HH22. HH23 [Fuji Electric FA Components \& Systems Co., Ltd] | DCR2-10A25C | AC $250 \mathrm{~V} 0.1 \mu \mathrm{~F}+100 \Omega$ | C002482 |
| 380 to 480 V |  |  | RFN3AL504KD | DC $1000 \mathrm{~V} 0.5 \mu \mathrm{~F}+220 \Omega$ | C002630 |

## Peripheral Devices and Options (continued)

## Zero Phase Reactor

Zero-phase reactor should match wire gauge.*

* Current values for wire gauges may vary based on electrical codes.

The table below lists selections based on Japanese electrical standards and Yaskawa's ND rating. Contact Yaskawa for questions regarding UL.

Finemet Zero-Phase Reactor to Reduce Radio Noise Note: Finemet is a registered trademark of Hitachi Metals, Ltd.


【Hitachi Metals, Ltd.】

## Connection Diagram

Compatible with the input and output side of the drive
Example: Connection to output terminal


Diagram a


All wires (U/T1, V/T2, W/T3) should pass through the four cores of the reactor in series without winding.


| Model <br> CIMR-U: " 2 A | U1000 | Zero Phase Reactor |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Recommended Gauge $\left(\mathrm{mm}^{2}\right)$ | Input Side/Output Side |  |  |  |
|  | Input Side/Output Side | Model | Code No. | Qty. | Diagram |
| 0028 | 5.5 | F6045GB | FIL001098 | 1 | a |
| 0042 | 14 | F6045GB | FIL001098 | 4 | b |
| 0054 | 14 | F6045GB | FIL001098 | 4 | b |
| 0068 | 22 | F6045GB | FIL001098 | 4 | b |
| 0081 | 30 | F6045GB | FIL001098 | 4 | b |
| 0104 | 38 | F6045GB | FIL001098 | 4 | b |
| 0130 | 22X2P | F11080GB | FIL001097 | 4 | b |
| 0154 | 22X2P | F11080GB | FIL001097 | 4 | b |
| 0192 | 38X2P | F11080GB | FIL001097 | 4 | b |
| 0248 | 50X2P | F11080GB | FIL001097 | 4 | b |

400 V Class

| $\begin{gathered} \text { Model } \\ \text { CIMR-U: } \end{gathered}$ | U1000 | Zero Phase Reactor |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Recommended Gauge (mm²) | Input Side/Output Side |  |  |  |
|  | Inout Side/Output Side | Model | Code No. | Qty. | Diagram |
| 0011 | 2 | F6045GB | FIL001098 | 1 | a |
| 0014 | 2 | F6045GB | FIL001098 | , | a |
| 0021 | 3.5 | F6045GB | FIL001098 | 1 | a |
| 0027 | 5.5 | F6045GB | FIL001098 | 1 | a |
| 0034 | 8 | F11080GB | FIL001097 | 1 | a |
| 0040 | 14 | F6045GB | FIL001098 | 4 | b |
| 0052 | 14 | F6045GB | FIL001098 | 4 | b |
| 0065 | 22 | F6045GB | FIL001098 | 4 | b |
| 0077 | 22 | F6045GB | FIL001098 | 4 | b |
| 0096 | 38 | F6045GB | FIL001098 | 4 | b |
| 0124 | 22X2P | F11080GB | FIL001097 | 4 | b |
| 0156 | 22X2P | F11080GB | FIL001097 | 4 | b |
| 0180 | 30X2P | F11080GB | FIL001097 | 4 | b |
| 0216 | 38X2P | F11080GB | FIL001097 | 4 | b |
| 0240 | 50X2P | F11080GB | FIL001097 | 4 | b |
| 0302 | 80X2P | F200160PB | 300-001-041 | 4 | b |
| 0361 | 100X2P | F200160PB | 300-001-041 | 4 | b |
| 0414 | 125X2P | F200160PB | 300-001-041 | 4 | b |
| 0477 | Available soon. |  |  |  |  |
| 0590 |  |  |  |  |  |
| 0720 |  |  |  |  |  |
| 0900 |  |  |  |  |  |
| 0930 |  |  |  |  |  |

## Isolator (Insulation Type DC Transmission Converter)



## Performance

(1) Allowance
(2) Temperature Fluctuation
(3) Aux. Power Supply Fluctuation
(4) Load Resistance Fluctuation
(5) Output Ripple
(6) Response Time
(7) Withstand Voltage
(8) Insulation Resistance
$\pm 0.25 \%$ of output span (ambient temp.: $23^{\circ} \mathrm{C}$ )
$\pm 0.25 \%$ of output span (at $\pm 10^{\circ} \mathrm{C}$ of ambient temperature)
$\pm 0.1 \%$ of output span (at $\pm 10 \%$ of aux. power supply)
$\pm 0.05 \%$ of output span (in the range of load resistance)
$\pm 0.5 \%$ P-P of output span
0.5 s or less (time to settle to $\pm 1 \%$ of fi nal steady value)

2000 Vac for 60 s (between all terminals and enclosure)
$20 \mathrm{M} \Omega$ and above (using 500 Vdc megger between each terminal and enclosure)

## Product Line

| Model | Input Signal | Output Signal | Power Supply | Code No. |
| :---: | :---: | :---: | :---: | :---: |
| DGP2-4-4 | 0 to 10 V | 0 to 10 V | 100 Vac | CON 000019.25 |
| DGP2-4-8 | 0 to 10 V | 4 to 20 mA | 100 Vac | CON 000019.26 |
| DGP2-8-4 | 4 to 20 mA | 0 to 10 V | 100 Vac | CON 000019.35 |
| DGP2-3-4 | 0 to 5 V | 0 to 10 V | 100 Vac | CON 000019.15 |
| DGP3-4-4 | 0 to 10 V | 0 to 10 V | 200 Vac | CON 000020.25 |
| DGP3-4-8 | 0 to 10 V | 4 to 20 mA | 200 Vac | CON 000020.26 |
| DGP3-8-4 | 4 to 20 mA | 0 to 10 V | 200 Vac | CON 000020.35 |
| DGP3-3-4 | 0 to 5 V | 0 to 10 V | 200 Vac | CON 000020.15 |

## Momentary Power Loss Recovery Unit



Weight: 2 kg

Connection Diagram


Dimensions (mm)


Model, Code No.

| Model | Code No. |
| :---: | :---: |
| 200 V Class: P0010 | P0010 |
| 400 V Class: P0020 | P0020 |

Note: Functions as a back-up power supply for drives up to 11 kW . Allows the drive to ride through a power loss up to 2 s long. The drive alone can continue running through a power loss lasting 0.1 s to 1.0 s . Results may vary with drive capacity.

## Peripheral Devices and Options (continued)

## LED Operator

| Model | Code No. |
| :---: | :---: |
| JVOP-182 | $100-043-155$ |

Dimensions (mm)


Operator Extension Cable
Enables remote operation

| Model | Code No. |
| :---: | :---: |
| WV001 $(1 \mathrm{~m})$ | WV001 |
| WV003 $(3 \mathrm{~m})$ | WV003 |

Note: Never use this cable for connecting the drive to a PC. Doing so may damage the PC.


## Operator Mounting Bracket

This bracket is required to mount the LED or LCD operator outside an enclosure panel.

| Item | Model | Code No. | Installation | Notes |
| :---: | :---: | :---: | :---: | :---: |
| Installation Support Set A | EZZ020642A | 100-039-992 |  | For use with holes through the panel |
| Installation Support Set B | EZZ020642B | 100-039-993 |  | For use with panel mounted threaded studs <br> Note: If weld studs are on the back of the panel, use the Installation Support Set B. |

## USB Copy Unit (Model: JVOP-181)

Copy parameter settings in a single step, then transfer those settings to another drive. Connects to the RJ-45 port on the drive and to the USB port of a PC

## Connection

| Model | Code No. |
| :---: | :---: |
| JVOP-181 | $100-038-281$ |

Model, Code No.

Note: JVOP-181 is a set consisting of a USB copy unit, RJ-45 cable, and USB cable.

## Specifications

| Item | Specifications |
| :---: | :--- |
| Port | LAN (RJ-45) Connect to the drive. |
|  | USB (Ver.2.0 compatible) Connect to the PC as required. |
| Power Supply | Supplied from a PC or the drive |
| Operating System | Windows2000/XP |
| Memory | Memorizes the parameters for one drive. |
| Dimensions | $30(\mathrm{~W}) \times 80(\mathrm{H}) \times 20(\mathrm{D}) \mathrm{mm}$ |
| Accessories | RJ-45 Cable $(1 \mathrm{~m})$, USB Cable $(30 \mathrm{~cm})$ |

Note: 1. You can also use a commercially available USB 2.0 cable (with A-B connectors) for the USB cable.
2. No USB cable is needed to copy parameters to other drives.

Note: 1. Drives must have identical software versions to copy parameters settings.
2. Requires a USB driver.

You can download the driver for free from Yaskawa's product and technical information website (http://www.e-mechatronics.com).
3. Parameter copy function disabled when connected to a PC.

## PC Cable

Cable to connect the drive to a PC with DriveWizard Plus or DriveWorksEZ installed.
Use a commercially available USB 2.0 cable (A-B connectors, max. 3 m).
Connection


Note: You can also use the JVOP-181 copy unit and cables as the USB cable.

Note: 1. DriveWizard Plus is a PC software package for managing parameters and functions in Yaskawa drives. To order this software, contact your Yaskawa. DriveWorksEZ is the software for creating custom application programs for the drive through visual programming. To order this software, contact our sales representative.
2. Requires USB driver. You can download the driver for free from Yaskawa's product and technical information website (http://www.e-mechatronics.com).

## Peripheral Devices and Options (continued)

## Frequency Meter/Current Meter



Model, Code No.

| Model | Code No. |
| :--- | :--- |
| Scale-75 Hz full-scale: DCF-6A | FM000065 |
| Scale-60/120 Hz full-scale: DCF-6A | FM000085 |
| Scale-5 A full-scale: DCF-6A | DCF-6A-5A |
| Scale-10 A full-scale: DCF-6A | DCF-6A-10A |
| Scale-20 A full-scale: DCF-6A | DCF-6A-20A |
| Scale-30 A full-scale: DCF-6A | DCF-6A-30A |
| Scale-50 A full-scale: DCF-6A | DCF-6A-50A |

Note: DCF-6A specifications are $3 \mathrm{~V}, 1 \mathrm{~mA}$, and $3 \mathrm{k} \Omega$ inner impedance. Because the U1000 multi-function analog monitor output default setting is 0 to 10 V , set frequency meter adjusting potentiometer ( 20 k $\Omega$ ) or parameter H4-02 (analog monitor output gain) within the range of 0 to 3 V .

Dimensions (mm)


Mtg. bolt $\times 4$ (M3)

2424 4-4 dia


Panel Cut-Out Weight: 0.3 kg

Variable Resistor Board (installed to drive terminals)


Model, Code No.

| Model | Code No. |
| :--- | :--- |
| Meter scale $20 \mathrm{k} \Omega$ | ETX3120 |

Connection Diagram


Weight: 20 g

Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer


Model, Code No.
Dimensions (mm)

| Model | Code No. |
| :--- | :--- |
| RV30YN20S $2 \mathrm{k} \Omega$ | RH000739 |
| RV30YN20S $20 \mathrm{k} \Omega$ | RH000850 |



Weight: 0.2 kg
Control Dial for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer


Model, Code No.

| Model | Code No. |
| :--- | :---: |
| CM-3S | HLNZ-0036 |

Dimensions (mm)


- Meter Plate for Frequency Setting Potentiometer/Frequency Meter Adjusting Potentiometer

Model, Code No.


| Model | Code No. |
| :---: | :---: |
| NPJT41561-1 | NPJT41561-1 |

Dimensions (mm)


Output Voltage Meter
Model, Code No.


| Model | Code No. |
| :--- | :---: |
| Scale-300 V full-scale <br> (Rectifi cation Type Class 2.5: SCF-12NH) | VM000481 |
| Scale-600 V full-scale <br> (Rectifi cation Type Class 2.5: SCF-12NH) | VM000502 |

Dimensions (mm)



Panel Cut-out
Weight: 0.3 kg

## Potential Transformer

Model, Code No.

| Model | Code No. |
| :--- | :---: |
| 600 V meter for voltage transformer |  |
| UPN-B 440/110 V (400/100 V) | $100-011-486$ |

Note: For use with a standard voltage regulator. A standard voltage regulator may not match the drive output voltage. Select a regulator specifi cally designed for the drive output (100-011486), or a voltmeter that does not use a transformer and offers direct read out

Dimensions (mm)


## Application Notes

## Application Notes

## Selection

## ■ Rated Output Current Capacity

Make sure that the motor rated current is less than rated output current for the drive.

- When the harmonic current distortion rate is $5 \%$ or less
The rated output current of the drive should be larger than 1.15 times of the motor rated current. The default setting of C7-60 should be also changed. Refer to Technical Manual for details.
- When running more than one motor in parallel from a single drive
The capacity of the drive should be larger than 1.1 times of the total motor rated current. However, run only one motor from each drive when using vector control. It is not possible to run more than one motor from one drive with vector control.
$\square$ When 2 Seconds is Required for Momentary Power Loss Ride-Thru Time
When continuing the drive operation after the power is restored even if a momentary loss of power of 2 seconds occurs, use the following units.
. 200 V class Momentary Power Loss Ride-Thru unit: Model no. 73600-P0010
- 400 V class Momentary Power Loss Ride-Thru unit: Model no. 73600-P0020


## $\square$ Required Time for Drive to be Ready

The drive needs 1.5 seconds* to prepare for operation after the power is turned on. Be careful of this delay if using an external reference input.

* This time is required if no optional device is used with the drive. If an optional communication device is used, the time required for the drive to be ready for operation will vary in accordance with the start up time of the optional communication card.


## ■ Selection of Power Capacity

Use a power supply that is greater than the rated input capacity (kVA) of the drive. If the power is lower than the rated capacity of the drive, the device will be unable to run the application properly and a fault will occur.
The rated input capacity of the drive, $\mathrm{S}_{\text {CONV }}[\mathrm{kVA}]$, can be calculated by the following formula.
$\mathrm{S}_{\text {CONV }}=\sqrt{3} \times \mathrm{I}_{\text {in }} \times \mathrm{V}_{\text {in }} \div 1000$
(lin: Rated input current [A], $\mathrm{V}_{i n}$ : Applicable power line voltage [V])

Connection to Power Supply
The total impedance of the power supply and wiring for the rated current of the drive is $\% Z=10 \%$ or more. If the impedance of the power supply is too large, then power voltage distortion may occur. If the wiring is too long, then be sure that proper preventative measures such as thick cables or series wiring have been taken to lower the impedance of wiring. Contact Yaskawa or your Yaskawa agent for details.

## Grounding the Power Supply

The drive is highly recommended that the power supply has its own dedicated ground because the drive is designed to run with a $1: 1$ ratio relative ratio relative to the power supply. Other devices should be grounded as directed in the specifications for those devices. Particular care needs to be taken when connecting sensitive electronic equipment (such as OA devices). Separate ground lines to prevent problems from noise, and install a noise filter.

## $\square$ When Using a Generator as a Power Supply

Select the generator capacity approximately twice as large as the drive input power supply capacity. For further information, contact your Yaskawa representative. Set the deceleration time or load so that the regenerative power from the motor will be $10 \%$ or less of the generator capacity.

- When a Phase Advance Capacitor or Thyristor Controller is Provided for the Power Supply
No phase advance capacitor is needed for the drive. Installing a phase advance capacitor to the drive will weaken the power factor.
For the phase advance capacitor that has already been installed on the same power supply system as the drive, attach a phase-advance capacitor with a series reactor to prevent oscillation with the drive.
Contact Yaskawa or your Yaskawa agent, if any device generating voltage surge or voltage distortion such as DC motor drive thyristor controller or magnetic agitator is installed on the same power supply system.
- Prevention Against EMC or Harmonic Leakage Current

Use units with built-in EMC filters that have the CE marking.
If a device that will be affected by noise is near the drive, use a zero-phase reactor as a noise filter.
Use a leakage relay or a ground leakage breaker designed for products provided with prevention from harmonics leak current, when necessary.

## - Affects of Power Supply Distortion

When the power supply voltage is distorted, the harmonics contents increase because the harmonics of the power supply system enter the drive.

## $\square$ Starting Torque

The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To achieve a higher starting torque, use a larger drive, or a drive and motor with larger capacity.

## - Emergency Stop

When the drive faults out, the output is shut off. This, however, does not stop the motor immediately. Some type of mechanical brake may be needed if it is necessary to halt the motor faster than the Fast Stop function is able to.

## - Repetitive Starting/Stopping

Cranes (hoists), elevators, punching presses, and other such applications with frequent starts and stops often exceed $150 \%$ of their rated current values. Heat stress generated from repetitive high current can shorten the lifespan of the IGBTs. The expected lifespan for the IGBTs is about 8 million start and stop cycles with a 4 kHz carrier frequency and a $150 \%$ peak current.
For crane-type applications using an inching function in which the motor is quickly started and stopped, Yaskawa recommends selecting a large enough drive so that peak current levels remain below $150 \%$ of the drive rated current.
Run only one motor from each drive when using vector control. It is not possible to run more than one motor from one drive with vector control.

## - Carrier Frequency Derating

When the carrier frequency of the drive is increased above the factory default setting, the rated output current of the drive should be reduced. Refer to the instruction manual of the drive for details on this function.

## Installation

## $\square$ Enclosure Panels

Keep the drive in a clean environment by either selecting an area free of airborne dust, lint, and oil mist, or install the drive in an enclosure panel. Leave the required space between the drives to provide for cooling, and take steps to ensure that the ambient temperature remains within allowable limits. Keep flammable materials away from the drive. If the drive must be used in an area where it is subjected to oil mist and excessive vibration, protective designs are available. Contact Yaskawa or your Yaskawa agent for details.

## - Installation Direction

The drive should be installed upright as specified in the manual.

## Settings

- Motor Code

If using permanent magnet motors, make sure that the proper motor code has been set to parameter E5-01 before performing a trial run.

## Upper Limits

The drive is capable of running the motor up to 400 Hz . Due to the danger of accidentally of operating at high speed, be sure to set the upper limit for the frequency to control the maximum speed. The default setting for the maximum output frequency is 60 Hz .

## - DC Injection Braking

Motor overheat can result if there is too much current used during DC Injection Braking, or if the time for DC Injection Braking is too long.

## Acceleration/Deceleration Times

Acceleration and deceleration times are affected by how much torque the motor generates, the load torque, and the inertia moment. Set a longer accel/decel time when Stall Prevention is enabled. The accel/decel times are lengthened for as long as the Stall Prevention function is operating. For faster acceleration and deceleration, use a larger drive and motor.

## Application Notes (continued)

## Compliance with Harmonic Suppression Guidelines

- Guidelines for harmonic suppression measures are applicable to consumers that receive power from a 6.6 kV or higher system. For details, refer to the Harmonics Suppression Technical Guideline JEAG 9702-1995.
- With respect to the harmonic suppression guidelines, the U1000 is a Matrix Converter and does not generate harmonics ( $\mathrm{K}_{5}=0$ ). However, the harmonic component is not completely zero.


## General Handling

- Wiring Check

Doing so will destroy the drive.
Be sure to perform a final check of all sequence wiring and other connections before turning the power on. Make sure there are no short circuits on the control terminals (+V, AC,etc.), as this could damage the drive.

■ Installing a Ground Fault Interrupter or an MCCB We recommend that you install ground fault interrupter (ELCB) for wire protection and as protection against secondary damage for faults. Also, if short circuit cutoffs are permitted in the upstream power supply system, we recommend that you use a molded case circuit breaker (MCCB).

We recommend that you select an ELCB designed for AC drives (one with high-frequency countermeasures). Select the MCCB based on the power supply power factor of the Matrix Converter (depends on the power supply voltage, output frequency, and load).

## - Magnetic Contactor Installation

Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered.
Avoid switching a magnetic contactor on the power supply side more frequently than once every 30 minutes. Frequent switching can cause damage to the drive.

Inspection and Maintenance
Capacitors for the control power supply take time to discharge even after the power has been shut off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

The heatsink can become quite hot during operation, and proper precautions should be taken to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down.
Even when the power has been shut off for a drive running a PM motor, voltage continues to be generated at the motor terminals while the motor coasts to stop. Take the precautions described below to prevent shock and injury:

- Applications where the machine can still rotate even though the drive has fully stopped should have a load switch installed to the output side of the drive. Yaskawa recommends manual load switches from the AICUT LB Series by AICHI Electric Works Co., Ltd.
- Do not allow an external force to rotate the motor beyond the maximum allowable speed, also when the drive has been shut off.
- Wait for at least the time specified on the warning label after opening the load switch on the output side before inspecting the drive or performing any maintenance.
- Do not open and close the load switch while the motor is running, as this can damage the drive.
- If the motor is coasting, make sure the power to the drive is turned on and the drive output has completely stopped before closing the load switch.


## - Wiring

All wire ends should use ring terminals for UL/cUL compliance. Use only the tools recommended by the terminal manufacturer for crimping.

Transporting the Drive
Never steam clean the drive.
During transport, keep the drive from coming into contact with salts, fluorine, bromine, phthalate ester, and other such harmful chemicals.

## Notes on Motor Operation

Using a Standard Motor

■ Low Speed Range
There is a greater amount of loss when operating a motor using an drive than when running directly from line power. With a drive, the motor can become quite hot due to the poor ability to cool the motor at low speeds. The load torque should be reduced accordingly at low speeds. The figure above shows the allowable load characteristics for a Yaskawa standard motor. A motor designed specifically for operation with a drive should be used when $100 \%$ continuous torque is needed at low speeds.

## Insulation Tolerance

Consider voltage tolerance levels and insulation in applications with an input voltage of over 440 V or particularly long wiring distances. Contact Yaskawa or your Yaskawa agent for consultation.

## High Speed Operation

Problems may occur with the motor bearings and dynamic balance in applications operating at over 60 Hz . Contact Yaskawa for consultation.

## - Torque Characteristics

Torque characteristics differ when operating directly from line power. The user should have a full understanding of the load torque characteristics for the application.

## Vibration and Shock

U1000 lets the user choose high carrier PWM control. Selecting Closed Loop Vector Control can help reduce motor oscillation. Keep the following points in mind when using high carrier PWM:
(1) Resonance

Take particular caution when using a variable speed drive for an application that is conventionally run from line power at a constant speed. Shockabsorbing rubber should be installed around the base of the motor and the Jump Frequency selection should be enabled to prevent resonance.
(2) Any imperfection on a rotating body increases vibration with speed.

Caution should be taken when operating above the motor rated speed.
(3) Subsynchronous Resonance

Subsynchronous resonance may occur in fans, blowers, turbines, and other applications with high load inertia, as well as in motors with a relatively long shaft.

## Audible Noise

Noise created during run varies by the carrier frequency setting. Using a high carrier frequency creates about as much noise as running from line power. Operating above the rated speed can create unpleasant motor noise.

## Using a Synchronous Motor

- Yaskawa or your Yaskawa agent if you plan to use any other synchronous motor not endorsed by Yaskawa.
- A single drive is not capable of running multiple synchronous motors at the same time. Use a standard induction motor for such setups.
- At start, a synchronous motor may rotate slightly in the opposite direction of the Run command depending on parameter settings and motor type.
- The amount of starting torque that can be generated differs by each control mode and by the type of motor being used. Set up the motor with the drive after verifying the starting torque, allowable load characteristics, impact load tolerance, and speed control range. Contact Yaskawa or your Yaskawa agent if you plan to use a motor that does not fall within these specifications.
- Even with a braking resistor, braking torque is less than $125 \%$ when running between $20 \%$ to $100 \%$ speed, and falls to less than half the braking torque when running at less than 20\% speed.
- In Open Loop Vector Control for PM motors, the allowable load inertia moment is approximately 50 times higher than the motor inertia moment or less. Contact Yaskawa or your Yaskawa agent concerning applications with a larger inertia moment.
When using a holding brake in Open Loop Vector Control for PM motors, release the brake prior to starting the motor. Failure to set the proper timing can result in speed loss. Not for use with conveyor, transport, or hoist type applications.
- To restart a coasting motor rotating at over 200 Hz while in the V/f control mode, Speed Search can be used.


## Application Notes (continued)

## Applications with Specialized Motors

- Multi-Pole Motor

Because the rated current will differ from a standard motor, be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. If a regenerative overvoltage fault occurs or if overcurrent protection is triggered, the motor will coast to stop.

## - Submersible Motor

Because motor rated current is greater than a standard motor, select the drive capacity accordingly. Be sure to use a large enough motor cable to avoid decreasing the maximum torque level on account of voltage drop caused by a long motor cable.

## - Explosion-Proof Motor

Both the motor and drive need to be tested together to be certified as explosion-proof. The drive is not for explosion proof areas.
An explosion-proof pulse generators ( PG ) is used for an explosion-proof with voltage tolerance. Use a specially designed pulse coupler between the drive and the PG when wiring.

## ■ Geared Motor

Continuous operation specifications differ by the manufacturer of the lubricant. Due to potential problems of gear damage when operating at low speeds, be sure to select the proper lubricant. Consult with the manufacturer for applications that require speeds greater than the rated speed range of the motor or gear box.

## Single-Phase Motor

Variable speed drives are not designed for operating single phase motors. Using a capacitor to start the motor causes excessive current to flow into the capacitors, potentially causing damage. A split-phase start or a repulsion start can end up burning out the starter coils because the internal centrifugal switch is not activated. U1000 is for use only with 3-phase motors.

## Motor with Brake

Caution should be taken when using a drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels. A separate power supply should be installed for the motor brake. Motors with a built-in brake tend to generate a fair amount of noise when running at low speeds.

## Power Driven Machinery

## (decelerators, belts, chains, etc.)

Continuous operation at low speeds wears on the lubricating material used in gear box type systems to accelerate and decelerate power driven machinery. Caution should also be taken when operating at speeds above the rated machine speed due to noise and shortened performance life.

## Global Service Network



| Region | Service Area | Service Location | Service Agency |  | Telephone/Fax |
| :---: | :---: | :---: | :---: | :---: | :---: |
| North America | U.S.A. | Chicago (HQ) Los Angeles San Francisco New Jersey Boston Ohio <br> North Carolina | (1)YASKAWA AMERICA INC. | $$ |  |
|  | Mexico | Mexico City | (2PILLAR MEXICANA. S.A. DE C.V. | $\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & +52-555-660-5553 \\ & +52-555-651-5573 \end{aligned}$ |
| South America | South America | São Paulo | © YASKAWA ELÉTRICO DO BRASIL LTDA. | $\begin{aligned} & \text { s } \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & +55-11-3585-1100 \\ & +55-11-5581-8795 \end{aligned}$ |
|  | Colombia | Bogota | (4)VARIADORES LTD.A. | $\begin{aligned} & \boldsymbol{\varepsilon} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & +57-1-428-4225 \\ & +57-1-428-2173 \end{aligned}$ |
| Europe | Europe, South Africa | Frankfurt | ©YASKAWA EUROPE GmbH | $\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & \hline+49-6196-569-300 \\ & +49-6196-569-398 \end{aligned}$ |
| Asia | Japan | Tokyo, offices nationwide | © YASKAWA ELECTRIC CORPORATION (Manufacturing, sales) | $\begin{aligned} & \hline \mathbf{s} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & +81-3-5402-4502 \\ & +81-3-5402-4580 \end{aligned}$ |
|  |  |  | © YASKAWA ELECTRIC ENGINEERING CORPORATION (After-sales service) | $\begin{aligned} & \hline \mathbf{s} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & \hline+81-4-2931-1810 \\ & +81-4-2931-1811 \end{aligned}$ |
|  | South Korea | Seoul | 8YASKAWA ELECTRIC KOREA CORPORATION | $\begin{aligned} & \hline \mathbf{s} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & +82-2-784-7844 \\ & +82-2-784-8495 \end{aligned}$ |
|  |  |  | OYASKAWA ENGINEERING KOREA CORPORATION | $\begin{aligned} & \mathbf{\pi} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & +82-2-3775-0337 \\ & +82-2-3775-0338 \end{aligned}$ |
|  | China | Beijing, Guangzhou, Shanghai | (1)YASKAWA ELECTRIC (CHINA) CO., LTD. | $\begin{aligned} & \hline \mathbf{s} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & +86-21-5385-2200 \\ & +86-21-5385-3299 \end{aligned}$ |
|  | Taiwan | Taipei | (1)YASKAWA ELECTRIC TAIWAN CORPORATION | $\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & +886-2-2502-5003 \\ & +886-2-2505-1280 \end{aligned}$ |
|  | Singapore | Singapore | (1)YASKAWA ELECTRIC (SINGAPORE) PTE. LTD. | $\begin{aligned} & \boldsymbol{\varepsilon} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & +65-6282-3003 \\ & +65-6289-3003 \end{aligned}$ |
|  |  |  | (1)YASKAWA ENGINEERING ASIA-PACIFIC PTE. LTD. | $\begin{aligned} & \hline \mathbf{e} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & \hline+65-6282-1601 \\ & +65-6382-3668 \end{aligned}$ |
|  | Thailand | Bangkok | (4)YASKAWA ELECTRIC (THAILAND) CO., LTD. | $\begin{aligned} & \mathbf{8} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & \hline+66-2693-2200 \\ & +66-2693-4200 \end{aligned}$ |
|  | India | Mumbai | (6LARSEN \& TOUBRO LIMITED | Headquarters  <br> Z $+91-22-67226200$ <br>  $+91-22-27782230$ <br> FAX $+91-22-27783032$ |  |
|  | Indonesia | Jakarta | (1)PT. YASKAWA ELECTRIC INDONESIA | $\begin{aligned} & \hline \mathbf{s} \\ & \text { FAX } \end{aligned}$ | $\begin{aligned} & \hline+62-21-5794-1845 \\ & +62-21-5794-1843 \end{aligned}$ |
| Oceania | Australia | Sydney (HQ) Melbourne | ©ROBOTIC AUTOMATION PTY. LTD. | $$ |  |

DRIVE CENTER (INVERTER PLANT)
2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan
Phone 81-930-25-3844 Fax 81-930-25-4369
http://www.yaskawa.co.jp

## YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan
Phone 81-3-5402-4502 Fax 81-3-5402-4580
http://www.yaskawa.co.jp

## YASKAWA AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A
Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310 http://www.yaskawa.com

## YASKAWA ELÉTRICO DO BRASIL LTDA.

Avenida Piraporinha 777, Diadema, São Paulo, 09950-000, Brazil
Phone 55-11-3585-1100 Fax 55-11-3585-1187
http://www yaskawa.com br

## YASKAWA EUROPE GmbH

Hauptstrasse 185, 65760 Eschborn, Germany
Phone 49-6196-569-300 Fax 49-6196-569-398
http://www.yaskawa.eu.com

## YASKAWA ELECTRIC KOREA CORPORATION

9F, Kyobo Securities Bldg., 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea
Phone 82-2-784-7844 Fax 82-2-784-8495
http://www.yaskawa.co.kr

## YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, \#04-02A, New Tech Park 556741, Singapore
Phone 65-6282-3003 Fax 65-6289-3003
http://www.yaskawa.com.sg
YASKAWA ELECTRIC (CHINA) CO., LTD.
12F, Carlton Bldg., No. 21 HuangHe Road, HuangPu District, Shanghai 200003, China
Phone 86-21-5385-2200 Fax 86-21-5385-3299
http://www.yaskawa.com.cn
YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No. 1 East Chang An Ave.,
Dong Cheng District, Beijing, 100738, China
Phone 86-10-8518-4086 Fax 86-10-8518-4082
YASKAWA ELECTRIC TAIWAN CORPORATION
9F, 16, Nanking E. Rd., Sec. 3, Taipei, 104, Taiwan
Phone 886-2-2502-5003 Fax 886-2-2505-1280
http://www.yaskawa-taiwan.com.tw

## YASKAWA INDIA PRIVATE LIMITED

\#17/A Electronics City, Hosur Road Bangalore 560100 (Karnataka), India
Phone 91-80-4244-1900 Fax 91-80-4244-1901
http://www.yaskawaindia.in


[^0]:    *1: Assumes operation at the rated output current. This value may fluctuate based on the power supply side impedance, as well as the input current, power supply transformer, and wiring conditions.
    $* 2$ : The rated input capacity is calculated by multiplying the power line voltage ( 480 V ) by 1.1.
    *3: The rated output current of the drive should be equal to or greater than the motor rated current.

    * 4 : This value assumes a carrier frequency of 4 kHz . Increasing the carrier frequency requires a reduction in current.
    $* 5$ : When the harmonic current distortion rate is $5 \%$ or less, the maximum output voltage is calculated by multiplying input power voltage by 0.87 . You must also change the parameter from the default setting.

[^1]:    * : Icu : Rated ultimate short-circuit breaking capacity Ics : Rated service short-circuit breaking capacity

